In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 174, S. 153-163
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 69, Heft 2, S. 246-253
Global insect decline impacts ecosystem resilience; pollinators such as honeybees (Apis mellifera L.) have suffered extensive losses over the last decade, threatening food security. Research has focused discretely on in-hive threats (e.g., Nosema and Varroa destructor) and broader external causes of decline (e.g., agrochemicals, habitat loss). This has notably failed to translate into successful reversal of bee declines. Working at the interdisciplinary nexus of entomological, social and ecological research, we posit that veterinary research needs to adopt a "One-Health" approach to address the scope of crises facing pollinators. We demonstrate that reversing declines will require integration of hive-specific solutions, a reappraisal of engagement with the many stakeholders whose actions affect bee health, and recontextualising both of these within landscape scale efforts. Other publications within this special issue explore novel technologies, emergent diseases and management approaches; our aim is to place these within the "One-Health" context as a pathway to securing honeybee health. Governmental policy reform offers a particularly timely pathway to achieving this goal. Acknowledging that healthy honeybees need an interdisciplinary approach to their management will enhance the contributions of veterinary research in delivering systemic improvements in bee health.
Global insect decline impacts ecosystem resilience; pollinators such as honeybees (Apis mellifera L.) have suffered extensive losses over the last decade, threatening food security. Research has focused discretely on in-hive threats (e.g., Nosema and Varroa destructor) and broader external causes of decline (e.g., agrochemicals, habitat loss). This has notably failed to translate into successful reversal of bee declines. Working at the interdisciplinary nexus of entomological, social and ecological research, we posit that veterinary research needs to adopt a "One-Health" approach to address the scope of crises facing pollinators. We demonstrate that reversing declines will require [1] integration of hive-specific solutions, [2] a reappraisal of engagement with the many stakeholders whose actions affect bee health, and [3] recontextualising both of these within landscape scale efforts. Other publications within this special issue explore novel technologies, emergent diseases and management approaches; our aim is to place these within the "One-Health" context as a pathway to securing honeybee health. Governmental policy reform offers a particularly timely pathway to achieving this goal. Acknowledging that healthy honeybees need an interdisciplinary approach to their management will enhance the contributions of veterinary research in delivering systemic improvements in bee health.
Productive and reproductive traits of beehives are influenced by climate and food availability in the region where the bees are reared or maintained, thus honey and pollen storage, egg-laying conditions of the queen as well as comb occupation are subject to seasonal variations. The present study was conducted in the apiary of the Department of Entomology and Acarology, College of Agriculture Luiz de Queiróz, ESALQ/USP, in the municipality of Piracicaba, in an area containing fruit trees, ornamental plants and a fragment of a native forest. The objective was to identify protein sources used by honeybees (Apis mellifera) over a whole year (2010-2011) in remnants of the Atlantic forest, information that can be used in the conservation and restoration of degraded areas. For sample preparation, the acetolysis method was adopted (Eredtman 1952) and the quantitative analysis was performed by counting successive samples of 900 grains per sample which were grouped by botanical species and/or pollen types. The results show that the bees used various plant types in the area, including ruderal species, to maintain their colonies. Apis mellifera seeks food sources in all plants in the surroundings of the apiary, including herbaceous, shrubs, trees, native or introduced. Eucalyptus sp. played an important role as a food source in all seasons due to its wide availability around the apiary and its high flower production. The most frequent pollen types (greater than 10% of the sample) were Anadenanthera sp., Acacia sp, Miconia sp. and Eucalyptus sp. in winter; Philodendron sp., Mikania cordifolia, Parthenium and Eucalyptus sp. in spring; Alternanthera ficoidea, Chamissoa altissima and Eucalyptus sp. In summer; Philodendron sp., Raphanus sp. and Eucalyptus sp. in autumn.
Queen-worker caste dimorphism is a typical trait for honeybees (Apis mellifera). We previously showed a maternal effect on caste differentiation and queen development, where queens emerged from queen-cell eggs (QE) had higher quality than queens developed from worker cell eggs (WE). In this study, newly-emerged queens were reared from QE, WE, and 2-day worker larvae (2L). The thorax size and DNA methylation levels of queens were measured. We found that queens emerging from QE had significantly larger thorax length and width than WE and 2L. Epigenetic analysis showed that QE/2L comparison had the most different methylated genes (DMGs, 612) followed by WE/2L (473), and QE/WE (371). Interestingly, a great number of DMGs (42) were in genes belonging to mTOR, MAPK, Wnt, Notch, Hedgehog, FoxO, and Hippo signaling pathways that are involved in regulating caste differentiation, reproduction and longevity. This study proved that honeybee maternal effect causes epigenetic alteration regulating caste differentiation and queen development.
The understanding of how niche-related traits change during species invasion have prompted what is now known as the niche conservatism principle. Most studies that have tested the niche conservatism principle have focused on the extent to which the species' climatic niches remain stable in their exotic distribution. However, it is equality important to address how biotic specialization, i.e. resource use, changes during exotic species invasions. Here, we use the widespread European honeybee (Apis mellifera) to understand whether its Grinnelian and Eltonian niches changed in its exotic distribution using tests of abiotic and biotic niche conservatism. We found that both niche domains of the European honeybee remained stable in its exotic distribution, which means that neither the climatic niche nor the biotic specialization showed significant differences between the native and the exotic ranges. Our findings that climatic and resource use are coupled can be explained by A. mellifera's long history of domestication and the possibility that life history traits (e.g., polyandry) may have shaped this species' large niche over the course of evolution and therefore facilitated exotic ranges colonization.
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 72, Heft 4, S. 1163-1169
The objective of this study was to determine the critical thermal minimum [CTmin], critical thermal maximum [CTmax], and thermal tolerance range of A. mellifera at three different elevations located in the Mexican Transition Zone: 11; 1,324, and 3,304 m.a.s.l. In general, we found that the CTmin of A. mellifera was lower at the site with the highest elevation (i.e., they tolerate colder temperatures). At the same time, the CTmax remained constant across the three studied elevations, revealing higher plasticity for cold tolerance rather than heat. Moreover, we did not find evidence that the body mass of the individuals was associated with their thermal tolerance at any of the three sampled elevations. Our findings suggest processes of local adaptation of A. mellifera populations in environmentally contrasting sites, allowing them to expand their range of distribution, which could be useful in predicting responses to future environmental change.
The present investigation was conducted from 2019 to 2020 to study the incidence pattern and molecular diagnosis of major honeybee (Apis mellifera L.) viral diseases in different areas of Jammu region of Jammu and Kashmir (UT). Using the RT-PCR technology, research was done to confirm that A. mellifera is infected by the Israeli acute paralysis virus (IAPV), the Thai sacbrood virus (TSBV), the Kashmir bee virus (KBV), and sacbrood virus (SBV). Particular primers for distinct viruses verified the existence of the virus in chosen samples from various areas, including Jammu, Samba, Ramban, and Udhampur. The samples taken from all four districts were found to contain illness. Clear and distinct bands with molecular sizes of roughly 110, 122, and 119 bp for IAPV, KBV, and SBV were formed by primer pairs of various viruses. The four districts' samples contained no evidence of the Thai sacbrood virus. The incidence range of Israeli acute paralysis disease was 8.33 to 21.42 %. The incidence range for Kashmir bee disease was 5.71 to 28.33 %. The incidence range for sacbrood disease was 8.0–18.55%. In the apiary at SKUAST-J, Chatha, the incidence ranges for IAPV, KBV, and SBV diseases were 0 to 6.25, 0 to 4.16, and 0 to 9.43 %, respectively.
The expansion of Africanized honeybees from South America to the southwestern United States in 50 years is considered one of the most spectacular biological invasions yet documented. In the American tropics, it has been shown that during their expansion Africanized honeybees have low levels of introgressed alleles from resident European populations. In the United States, it has been speculated, but not shown, that Africanized honeybees would hybridize extensively with European honeybees. Here we report a continuous 11-year study investigating temporal changes in the genetic structure of a feral population from the southern United States undergoing Africanization. Our microsatellite data showed that (1) the process of Africanization involved both maternal and paternal bidirectional gene flow between European and Africanized honeybees and (2) the panmitic European population was replaced by panmitic mixtures of A. m. scutellata and European genes within 5 years after Africanization. The post-Africanization gene pool (1998–2001) was composed of a diverse array of recombinant classes with a substantial European genetic contribution (mean 25–37%). Therefore, the resulting feral honeybee population of south Texas was best viewed as a hybrid swarm. ; PRODEP II - Medida 5/Acção 5.3
The expansion of Africanized honeybees from South America to the southwestern United States in <50 years is considered one of the most spectacular biological invasions yet documented. In the American tropics, it has been shown that during their expansion Africanized honeybees have low levels of introgressed alleles from resident European populations. In the United States, it has been speculated, but not shown, that Africanized honeybees would hybridize extensively with European honeybees. Here we report a continuous 11-year study investigating temporal changes in the genetic structure of a feral population from the southern United States undergoing Africanization. Our microsatellite data showed that (1) the process of Africanization involved both maternal and paternal bidirectional gene flow between European and Africanized honeybees and (2) the panmitic European population was replaced by panmitic mixtures of A. m. scutellata and European genes within 5 years after Africanization. The post-Africanization gene pool (1998–2001) was composed of a diverse array of recombinant classes with a substantial European genetic contribution (mean 25–37%). Therefore, the resulting feral honeybee population of south Texas was best viewed as a hybrid swarm.
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 264, S. 115499
This study evaluated the grooming and uncapping & removing hygienic behaviors of the honeybee colonies of the West Azerbaijan province of Iran from April 2021 to October 2022. Eighty colonies of Iranian honeybees infected with Varroa mite from Mahabad, Urmia, Oshnavieh, and Khoy cities of West Azerbaijan province were selected and studied regarding grooming and uncapping & removing hygienic behaviors. The results showed that there is no significant difference between the studied cities in terms of grooming behavior. The results showed that the season affects the grooming behavior of honeybee colonies in the studied cities. Therefore, the grooming behavior of the studied honeybee population in summer was significantly higher than that of colonies in spring (P < 0.05). Comparing the means of uncapping & removing hygienic behaviors after 48 hours showed that the honeybee colonies of the studied cities significantly differ in terms of these behaviors (P < 0.05). So, the highest and lowest averages of uncapping & removing hygienic behaviors after 48 hours were observed in the honeybee colonies of Khoy and Oshnavieh cities, respectively. The results showed a positive correlation between hygienic behaviors and all the functional-behavioral characteristics of honeybee colonies in this research. Our finding showed that the Iranian honeybee colonies of West Azerbaijan province of Iran can defend themselves against the Varroa mite by performing both grooming and uncapping & removing hygienic behaviors. Therefore, it is possible to improve the level of these behaviors in the honeybee colonies of this province by implementing breeding programs.