Harmonic Analysis
In: The Wadsworth & Brooks
In: The Wadsworth & Brooks/Cole Mathematics Series
1 Fourier Series and Integrals -- 1.1. Definitions and easy results -- 1.2. The Fourier transform -- 1.3. Convolution; approximate identities; Fejér's theorem -- 1.4. Unicity theorem; Parseval relation; Fourier-Stieltjes coefficients -- 1.5. The classical kernels -- 1.6. Summability; metric theorems -- 1.7. Pointwise summability -- 1.8. Positive definite sequences; Herglotz' theorem -- 1.9. The inequality of Hausdorff and Young -- 1.10. Multiple Fourier series; Minkowski's theorem -- 1.11. Measures with bounded powers; homomorphisms of l1 -- 2. The Fourier Integral -- 2.1. Introduction -- 2.2. Kernels on R -- 2.3. The Plancherel theorem -- 2.4. Another convergence theorem; the Poisson summation formula -- *2.5. Finite cyclic groups; Gaussian sums -- * Starred sections present material that is less fundamental. -- 3. Hardy Spaces -- 3.1. Hp(T) -- 3.2. Invariant subspaces, factoring, proof of the theorem of F. and M. Riesz -- 3.3. Theorems of Beurling and Szegö -- 3.4. Structure of inner functions -- 3.5. Theorem of Hardy and Littlewood; Hilbert's inequality -- 3.6. Hardy spaces on the line -- 4. Conjugate Functions -- 4.1. Conjugate series and functions -- 4.2. Theorems of Kolmogorov and Zygmund -- 4.3. Theorems of M. Riesz and Zygmund -- 4.4. The conjugate function as a singular integral -- 4.5. The Hilbert transform -- 4.6. Maximal functions -- 4.7. Rademacher functions; absolute Fourier multipliers -- 5. Translation -- 5.1. Theorems of Wiener and Beurling; the Titchmarsh convolution theorem -- 5.2. The Tauberian theorem -- 5.3. Spectral sets of bounded functions -- *5.4. A theorem of Szegö; theorem of Gru?ewska and Rajchman; idempotent measures -- 6. Distribution -- 6.1. Equidistribution of sequences -- 6.2. Distribution of (nku) -- 6.3. Dynamical systems; (k2u) -- Appendix. Integration by parts -- Bibliographic Notes.