Tagging of Explosives for Detection
In: Defence science journal: DSJ, Band 50, Heft 1, S. 45-49
ISSN: 0011-748X
115 Ergebnisse
Sortierung:
In: Defence science journal: DSJ, Band 50, Heft 1, S. 45-49
ISSN: 0011-748X
In: Current anthropology, Band 7, Heft 1, S. 67-82
ISSN: 1537-5382
Background Children are particularly susceptible to tuberculosis. However, most children exposed to Mycobacterium tuberculosis are able to control the pathogen without evidence of infection. Correlates of human protective immunity against tuberculosis infection are lacking, and their identification would aid vaccine design. Methods We recruited pairs of asymptomatic children with discordant tuberculin skin test status but the same sleeping proximity to the same adult with sputum smear-positive tuberculosis in a matched case-control study in The Gambia. Participants were classified as either Highly TB-Exposed Uninfected or Highly TB-Exposed Infected children. Serial luminescence measurements using an in vitro functional auto-luminescent Bacillus Calmette–Guérin (BCG) whole blood assay quantified the dynamics of host control of mycobacterial growth. Assay supernatants were analysed with a multiplex cytokine assay to measure associated inflammatory responses. Findings 29 pairs of matched Highly TB-Exposed Uninfected and Highly TB-Exposed Infected children aged 5 to 15 years old were enroled. Samples from Highly TB-Exposed Uninfected children had higher levels of mycobacterial luminescence at 96 hours than Highly TB-Exposed Infected children. Highly TB-Exposed Uninfected children also produced less BCG-specific interferon-γ than Highly TB-Exposed Infected children at 24 hours and at 96 hours. Interpretation Highly TB-Exposed Uninfected children showed less control of mycobacterial growth compared to Highly TB-Exposed Infected children in a functional assay, whilst cytokine responses mirrored infection status. Funding Clinical Research Training Fellowship funded under UK Medical Research Council/Department for International Development Concordat agreement and part of EDCTP2 programme supported by European Union (MR/K023446/1). Also MRC Program Grants (MR/K007602/1, MR/K011944/1, MC_UP_A900/1122).
BASE
In: Environmental science and pollution research: ESPR, Band 19, Heft 7, S. 2477-2487
ISSN: 1614-7499
In: Transcultural psychiatry, Band 56, Heft 6, S. 1237-1254
ISSN: 1461-7471
The worldwide scarcity of psychiatrists makes the identification of the factors associated with the intention to choose this specialty an important issue. This study aims to evaluate the association between religious affiliation and the intention to choose psychiatry as a specialty among medical students from 11 Latin American countries. We conducted a cross-sectional, multi-country study that included first- and fifth-year students of 63 medical schools in 11 Latin-American countries between 2011 and 2012. The main outcome and measures were the intention to pursue psychiatry as a specialty over other specialties (yes/no) and religious affiliation (without: atheist/agnostic; with: any religion). A total of 8308 participants were included; 53.6% were women, and the average age was 20.4 (SD = 2.9) years. About 36% were fifth-year students, and 11.8% were not affiliated with any religion. Only 2.6% had the intention to choose psychiatry; the highest proportion of students with the intention to choose psychiatry was among students in Chile (8.1%) and the lowest among students in Mexico (1.1%). After adjusting for demographic, family, academic as well as personal and professional projection variable, we found that those who had no religious affiliation were more likely to report the intention to become a psychiatrist [OR: 2.92 (95%CI: 2.14-4.00)]. There is a strong positive association between not having a religious affiliation and the intention to become a psychiatrist. The possible factors that influence this phenomenon must be evaluated in greater depth, ideally through longitudinal research.
In: Canadian Slavonic papers: an interdisciplinary journal devoted to Central and Eastern Europe, Band 44, Heft 3-4, S. 285-354
ISSN: 2375-2475
We present the results of a large multiwavelength follow-up campaign of the tidal disruption event (TDE) AT 2019dsg, focusing on low to high resolution optical spectroscopy, X-ray, and radio observations. The galaxy hosts a super massive black hole of mass (5.4±3.2)×106M⊙ and careful analysis finds no evidence for the presence of an active galactic nucleus, instead the TDE host galaxy shows narrow optical emission lines that likely arise from star formation activity. The transient is luminous in the X-rays, radio, UV, and optical. The X-ray emission becomes undetected after ∼100 d, and the radio luminosity density starts to decay at frequencies above 5.4 GHz by ∼160 d. Optical emission line signatures of the TDE are present up to ∼200 d after the light-curve peak. The medium to high resolution spectra show traces of absorption lines that we propose originate in the self-gravitating debris streams. At late times, after ∼200 d, narrow Fe lines appear in the spectra. The TDE was previously classified as N-strong, but after careful subtraction of the host galaxy's stellar contribution, we find no evidence for these N lines in the TDE spectrum, even though O Bowen lines are detected. The observed properties of the X-ray emission are fully consistent with the detection of the inner regions of a cooling accretion disc. The optical and radio properties are consistent with this central engine seen at a low inclination (i.e. seen from the poles). © 2021 The Author(s). ; GC and PGJ acknowledge support from European Research Council (ERC) Consolidator Grant 647208. TW is funded by ERC grant 320360 and by European Commission grant 730980. This research was made possible through the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund and NSFAST-1412587. We acknowledge the use of public data from the Swift data archive. We thank P. M. Vreeswijk for the data reduction of the UVES spectrum. This paper includes data obtained with the William Herschel Telescope (proposal IDs: W19B/P7, W19A/N3) as well as observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Isaac Newton Group of Telescopes and the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 1103.D-0328 "advanced Public ESO Spectroscopic Survey for Transient Objects" (ePESSTO+). GL was supported by a research grant (19054) from VILLUM FONDEN. D.M.-S. acknowledges support from the ERC under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 715051; Spiders). JM acknowledges financial support from the State Agency for Research of the Spanish MICIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and from the grant RTI2018-096228-B-C31 (MICIU/FEDER, EU). IA is a CIFAR Azrieli Global Scholar in the Gravity and the Extreme Universe Program and acknowledges support from that program, from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement number 852097), from the Israel Science Foundation (grant numbers 2108/18 and 2752/19), from the United States – Israel Binational Science Foundation (BSF), and from the Israeli Council for Higher Education Alon Fellowship. TWC acknowledges the EU Funding under Marie Skłodowska-Curie grant H2020-MSCA-IF-2018-842471. TMB was funded by the CONICYT PFCHA / DOCTORADOBECAS CHILE/2017-72180113. MN is supported by a Royal Astronomical Society Research Fellowship. FO acknowledges the support of the GRAWITA/PRIN-MIUR project: The new frontier of the Multi-Messenger Astrophysics: follow-up of electromagnetic transient counterparts of gravitational wave sources. ; Peer reviewed
BASE
Context. Thanks to the Gaia mission, it will be possible to determine the masses of approximately hundreds of large main belt asteroids with very good precision. We currently have diameter estimates for all of them that can be used to compute their volume and hence their density. However, some of those diameters are still based on simple thermal models, which can occasionally lead to volume uncertainties as high as 20-30%. Aims. The aim of this paper is to determine the 3D shape models and compute the volumes for 13 main belt asteroids that were selected from those targets for which Gaia will provide the mass with an accuracy of better than 10%. Methods. We used the genetic Shaping Asteroids with Genetic Evolution (SAGE) algorithm to fit disk-integrated, dense photometric lightcurves and obtain detailed asteroid shape models. These models were scaled by fitting them to available stellar occultation and/or thermal infrared observations. Results. We determine the spin and shape models for 13 main belt asteroids using the SAGE algorithm. Occultation fitting enables us to confirm main shape features and the spin state, while thermophysical modeling leads to more precise diameters as well as estimates of thermal inertia values. Conclusions. We calculated the volume of our sample of main-belt asteroids for which the Gaia satellite will provide precise mass determinations. From our volumes, it will then be possible to more accurately compute the bulk density, which is a fundamental physical property needed to understand the formation and evolution processes of small Solar System bodies. © ESO 2020. ; The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378 (SBNAF). Funding for the Kepler and K2 missions is provided by the NASA Science Mission directorate. L.M. was supported by the Premium Postdoctoral Research Program of the Hungarian Academy of Sciences. The research leading to these results has received funding from the LP2012-31 and LP2018-7 Lendulet grants of the Hungarian Academy of Sciences. This project has been supported by the Lendulet grant LP2012-31 of the Hungarian Academy of Sciences and by the GINOP-2.3.2-15-2016-00003 grant of the Hungarian National Research, Development and Innovation Office (NKFIH). TRAPPIST-South is a project funded by the Belgian Fonds de la Recherche Scientifique (F.R.S.-FNRS) under grant FRFC 2.5.594.09.F. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate. "The Joan Oro Telescope (TJO) of the Montsec Astronomical Observatory (OAdM) is owned by the Catalan Government and operated by the Institute for Space Studies of Catalonia (IEEC)." "This article is based on observations made with the SARA telescopes (Southeastern Association for Research in Astronomy), whose node is located at the Kitt Peak National Observatory, AZ under the auspices of the National Optical Astronomy Observatory (NOAO)." "This project uses data from the SuperWASP archive. The WASP project is currently funded and operated by Warwick University and Keele University, and was originally set up by Queen's University Belfast, the Universities of Keele, St. Andrews, and Leicester, the Open University, the Isaac Newton Group, the Instituto de Astrofisica de Canarias, the South African Astronomical Observatory, and by STFC." "This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration." The work of TSR was carried out through grant APOSTD/2019/046 by Generalitat Valenciana (Spain)
BASE
Context. Earlier work suggests that slowly rotating asteroids should have higher thermal inertias than faster rotators because the heat wave penetrates deeper into the subsurface. However, thermal inertias have been determined mainly for fast rotators due to selection effects in the available photometry used to obtain shape models required for thermophysical modelling (TPM). Aims. Our aims are to mitigate these selection effects by producing shape models of slow rotators, to scale them and compute their thermal inertia with TPM, and to verify whether thermal inertia increases with the rotation period. Methods. To decrease the bias against slow rotators, we conducted a photometric observing campaign of main-belt asteroids with periods longer than 12 h, from multiple stations worldwide, adding in some cases data from WISE and Kepler space telescopes. For spin and shape reconstruction we used the lightcurve inversion method, and to derive thermal inertias we applied a thermophysical model to fit available infrared data from IRAS, AKARI, and WISE. Results. We present new models of 11 slow rotators that provide a good fit to the thermal data. In two cases, the TPM analysis showed a clear preference for one of the two possible mirror solutions. We derived the diameters and albedos of our targets in addition to their thermal inertias, which ranged between 3(-3)(+33) and 45(-30)(+60) Jm(-2) s(-1/2) K-1. Conclusions. Together with our previous work, we have analysed 16 slow rotators from our dense survey with sizes between 30 and 150 km. The current sample thermal inertias vary widely, which does not confirm the earlier suggestion that slower rotators have higher thermal inertias.© ESO 2019 ; This work was supported by the National Science Centre, Poland, through grant no. 2014/13/D/ST9/01818. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378 (SBNAF). The research of V.K. was supported by a grant from the Slovak Research and Development Agency, number APVV-15-0458. R. D. acknowledges financial support from the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> award for the Instituto de Astrofisica de Andalucia(SEV-2017-0709). The Joan Oro Telescope (TJO) of the Montsec Astronomical Observatory (OAdM) is owned by the Catalan Government and operated by the Institute for Space Studies of Catalonia (IEEC). This article is based on observations made in the Observatorios de Canarias del IAC with the 0.82 m IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofisica de Canarias (IAC) in the Observatorio del Teide. This article is based on observations made with the SARA telescopes (Southeastern Association for Research in Astronomy), whose nodes are located at the Observatorios de Canarias del IAC on the island of La Palma in the Observatorio del Roque de los Muchachos; Kitt Peak, AZ under the auspices of the National Optical Astronomy Observatory (NOAO); and Cerro Tololo Inter-American Observatory (CTIO) in La Serena, Chile. This project uses data from the SuperWASP archive. The WASP project is currently funded and operated by Warwick University and Keele University, and was originally set up by Queen's University Belfast, the Universities of Keele, St. Andrews, and Leicester, the Open University, the Isaac Newton Group, the Instituto de Astrofisica de Canarias, the South African Astronomical Observatory, and by STFC. Funding for the Kepler and K2 missions is provided by the NASA Science Mission Directorate. The data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This publication makes use of data products from theWide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. The research leading to these results has received funding from the LP2012-31 and LP2018-7/2018 Lendulet grants of the Hungarian Academy of Sciences.
BASE
We gratefully acknowledge the support of the National Institute of Health-National Institute of Environmental Health Sciences (NIEHS) conference grant travel support (R13ES023276); Glenn Rice, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA also deserves thanks for his thoughtful feedback and inputs on the manuscript; William H.Goodson III was supported by the California Breast Cancer Research Program, Clarence Heller Foundation and California Pacific Medical Center Foundation; Abdul M.Ali would like to acknowledge the financial support of the University of Sultan Zainal Abidin, Malaysia; Ahmed Lasfar was supported by an award from the Rutgers Cancer Institute of New Jersey; Ann-Karin Olsen and Gunnar Brunborg were supported by the Research Council of Norway (RCN) through its Centres of Excellence funding scheme (223268/F50), Amancio Carnero's lab was supported by grants from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028) co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0306-2012); Matilde E. Lleonart was supported by a trienal project grant PI12/01104 and by project CP03/00101 for personal support. Amaya Azqueta would like to thank the Ministerio de Educacion y Ciencia ('Juande la Cierva' programme, 2009) of the Spanish Government for personal support; Amedeo Amedei was supported by the Italian Ministry of University and Research (2009FZZ4XM_002), and the University of Florence (ex6012); Andrew R.Collins was supported by the University of Oslo; Annamaria Colacci was supported by the Emilia-Romagna Region - Project 'Supersite' in Italy; Carolyn Baglole was supported by a salary award from the Fonds de recherche du Quebec-Sante (FRQ-S); Chiara Mondello's laboratory is supported by Fondazione Cariplo in Milan, Italy (grant n. 2011-0370); Christian C.Naus holds a Canada Research Chair; Clement Yedjou was supported by a grant from the National Institutes of Health (NIH-NIMHD grant no. G12MD007581); Daniel C.Koch is supported by the Burroughs Wellcome Fund Postdoctoral Enrichment Award and the Tumor Biology Training grant: NIH T32CA09151; Dean W. Felsher would like to acknowledge the support of United States Department of Health and Human Services, NIH grants (R01 CA170378 PQ22, R01 CA184384, U54 CA149145, U54 CA151459, P50 CA114747 and R21 CA169964); Emilio Rojas would like to thank CONACyT support 152473; Ezio Laconi was supported by AIRC (Italian Association for Cancer Research, grant no. IG 14640) and by the Sardinian Regional Government (RAS); Eun-Yi Moon was supported by grants from the Public Problem-Solving Program (NRF-015M3C8A6A06014500) and Nuclear R&D Program (#2013M2B2A9A03051296 and 2010-0018545) through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education, Science and Technology (MEST) in Korea; Fahd Al-Mulla was supported by the Kuwait Foundation for the Advancement of Sciences (2011-1302-06); Ferdinando Chiaradonna is supported by SysBioNet, a grant for the Italian Roadmap of European Strategy Forum on Research Infrastructures (ESFRI) and by AIRC (Associazione Italiana Ricerca sul Cancro; IG 15364); Francis L.Martin acknowledges funding from Rosemere Cancer Foundation; he also thanks Lancashire Teaching Hospitals NHS trust and the patients who have facilitated the studies he has undertaken over the course of the last 10 years; Gary S.Goldberg would like to acknowledge the support of the New Jersey Health Foundation; Gloria M.Calaf was supported by Fondo Nacional de Ciencia y Tecnología (FONDECYT), Ministerio de Educación de Chile (MINEDUC), Universidad de Tarapacá (UTA); Gudrun Koppen was supported by the Flemish Institute for Technological Research (VITO), Belgium; Hemad Yasaei was supported from a triennial project grant (Strategic Award) from the National Centre for the Replacement, Refinement and Reduction (NC3Rs) of animals in research (NC.K500045.1 and G0800697); Hiroshi Kondoh was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Science and Technology Agency and by JST, CREST; Hsue-Yin Hsu was supported by the Ministry of Science and Technology of Taiwan (NSC93-2314-B-320-006 and NSC94-2314-B-320-002); Hyun Ho Park was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) of the Ministry of Education, Science and Technology (2012R1A2A2A01010870) and a grant from the Korea Healthcare Technology R&D project, Ministry of Health and Welfare, Republic of Korea (HI13C1449); Igor Koturbash is supported by the UAMS/NIH Clinical and Translational Science Award (UL1TR000039 and KL2TR000063) and the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000; Jan Vondráček acknowledges funding from the Czech Science Foundation (13-07711S); Jesse Roman thanks the NIH for their support (CA116812); John Pierce Wise Sr. and Sandra S.Wise were supported by National Institute of Environmental Health Sciences (ES016893 to J.P.W.) and the Maine Center for Toxicology and Environmental Health; Jonathan Whitfield acknowledges support from the FERO Foundation in Barcelona, Spain; Joseph Christopher is funded by Cancer Research UK and the International Journal of Experimental Pathology; Julia Kravchenko is supported by a philanthropic donation by Fred and Alice Stanback; Jun Sun is supported by a Swim Across America Cancer Research Award; Karine A.Cohen-Solal is supported by a research scholar grant from the American Cancer Society (116683-RSG-09-087-01-TBE); Laetitia Gonzalez received a postdoctoral fellowship from the Fund for Scientific Research–Flanders (FWO-Vlaanderen) and support by an InterUniversity Attraction Pole grant (IAP-P7-07); Laura Soucek is supported by grant #CP10/00656 from the Miguel Servet Research Contract Program and acknowledges support from the FERO Foundation in Barcelona, Spain; Liang-Tzung Lin was supported by funding from the Taipei Medical University (TMU101-AE3-Y19); Linda Gulliver is supported by a Genesis Oncology Trust (NZ) Professional Development Grant, and the Faculty of Medicine, University of Otago, Dunedin, New Zealand; Louis Vermeulen is supported by a Fellowship of the Dutch Cancer Society (KWF, UVA2011-4969) and a grant from the AICR (14–1164); Mahara Valverde would like to thank CONACyT support 153781; Masoud H. Manjili was supported by the office of the Assistant Secretary of Defense for Health Affairs (USA) through the Breast Cancer Research Program under Award No. W81XWH-14-1-0087 Neetu Singh was supported by grant #SR/FT/LS-063/2008 from the Department of Science and Technology, Government of India; Nicole Kleinstreuer is supported by NIEHS contracts (N01-ES 35504 and HHSN27320140003C); P.K. Krishnakumar is supported by the Funding (No. T.K. 11-0629) of King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia; Paola A.Marignani is supported by the Dalhousie Medical Research Foundation, The Beatrice Hunter Cancer Institute and CIHR and the Nova Scotia Lung Association; Paul Dent is the holder of the Universal Inc.Chair in Signal Transduction Research and is supported with funds from PHS grants from the NIH (R01-CA141704, R01-CA150214, R01-DK52825 and R01-CA61774); Petr Heneberg was supported by the Charles University in Prague projects UNCE 204015 and PRVOUK P31/2012, and by the Czech Science Foundation projects P301/12/1686 and 15-03834Y; Po Sing Leung was supported by the Health and Medical Research Fund of Food and Health Bureau, Hong Kong Special Administrative Region, Ref. No: 10110021; Qiang Cheng was supported in part by grant NSF IIS-1218712; R. Brooks Robey is supported by the United States Department of Veterans Affairs; Rabindra Roy was supported by United States Public Health Service Grants (RO1 CA92306, RO1 CA92306-S1 and RO1 CA113447); Rafaela Andrade-Vieira is supported by the Beatrice Hunter Cancer Research Institute and the Nova Scotia Health Research Foundation; Renza Vento was partially funded by European Regional Development Fund, European Territorial Cooperation 2007–13 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–13) and grants from the Italian Ministry of Education, University and Research (MIUR) ex-60%, 2007; Riccardo Di Fiore was a recipient of fellowship granted by European Regional Development Fund, European Territorial Cooperation 2007–2013 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–2013); Rita Dornetshuber-Fleiss was supported by the Austrian Science Fund (FWF, project number T 451-B18) and the Johanna Mahlke, geb.-Obermann-Stiftung; Roberta Palorini is supported by a SysBioNet fellowship; Roslida Abd Hamid is supported by the Ministry of Education, Malaysia-Exploratory Research Grant Scheme-Project no: ERGS/1-2013/5527165; Sabine A.S.Langie is the beneficiary of a postdoctoral grant from the AXA Research Fund and the Cefic-LRI Innovative Science Award 2013; Sakina Eltom is supported by NIH grant SC1CA153326; Samira A.Brooks was supported by National Research Service Award (T32 ES007126) from the National Institute of Environmental Health Sciences and the HHMI Translational Medicine Fellowship; Sandra Ryeom was supported by The Garrett B. Smith Foundation and the TedDriven Foundation; Thierry Massfelder was supported by the Institut National de la Santé et de la Recherche Médicale INSERM and Université de Strasbourg; Thomas Sanderson is supported by the Canadian Institutes of Health Research (CIHR; MOP-115019), the Natural Sciences and Engineering Council of Canada (NSERC; 313313) and the California Breast Cancer Research Program (CBCRP; 17UB-8703); Tiziana Guarnieri is supported by a grant from Fundamental Oriented Research (RFO) to the Alma Mater Studiorum University of Bologna, Bologna, Italy and thanks the Fondazione Cassa di Risparmio di Bologna and the Fondazione Banca del Monte di Bologna e Ravenna for supporting the Center for Applied Biomedical Research, S.Orsola-Malpighi University Hospital, Bologna, Italy; W.Kimryn Rathmell is supported by the V Foundation for Cancer Research and the American Cancer Society; William K.Decker was supported in part by grant RP110545 from the Cancer Prevention Research Institute of Texas; William H.Bisson was supported with funding from the NIH P30 ES000210; Yon Rojanasakul was supported with NIH grant R01-ES022968; Zhenbang Chen is supported by NIH grants (MD004038, CA163069 and MD007593); Zhiwei Hu is grateful for the grant support from an institutional start-up fund from The Ohio State University College of Medicine and The OSU James Comprehensive Cancer Center (OSUCCC) and a Seed Award from the OSUCCC Translational Therapeutics Program.
BASE