Frontmatter -- Contents -- Preface -- Acknowledgements -- A Scottish Assembly -- Introduction -- Part I: Beginnings, 1968-74 -- Introduction -- The Claim of Scotland -- Why Enmity and Conflict? -- The Declaration of Perth -- The Three Dreams of Scottish Nationalism -- The Government of Scotland -- Forms and Consequences of Federalism -- An Assembly -- A Scheme of Legislative Devolution -- The New Appeal of Nationalism -- Part II: The Devolution Years, 1974-83 -- Introduction -- Scottish Government -- A Parliament for Scotland -- The Devolution of the Intellectuals -- Our Changing Democracy -- Nationalism, Community and Democracy -- Speech to Parliament -- The Slide to Independence -- The Trouble with John P. Mackintosh -- Why it must be 'No' when Assembly is put to the Vote -- The Conservative Party and Devolution -- Speech and Interview -- The Defeat of Devolution -- Interview: Portrait of a Devolutionist -- Part III: Reactions to Thatcherism, 1983-92 -- Introduction -- Interview: Devolution -- Scotland - Omega One -- Towards a Constitutional Convention -- The Devolution Maze -- A Claim of Right for Scotland -- Lecture -- Unrepentant Gradualism -- The Government of Scotland -- Church and Nation: a Catholic View -- Women's Issues and the Scottish Assembly -- Independence in Europe -- Thatcherism in a Cold Climate -- The Implications of a Scottish Parliament for Women's Organisations in Scotland -- The Scottish Constitutional Convention -- Part IV: Towards the Parliament, 1992-7 -- Introduction -- The Scottish Question -- Taking Stock of Taking Stock -- To Make the Parliament of Scotland a Model for Democracy -- The Governance of Scotland -- A Scottish Parliament: Friend or Foe to Local Government? -- Scottish Local Government in Europe -- Fundamentals for a New Scotland Act -- Scotland's Next Step -- Sovereignty after the Election -- Three-level Path to Flourish in Europe -- Scotland's Parliament -- What's the Story? -- Losing Sight of Tinkerbell -- Don't Wreck the Heritage we all Share -- Free, on our Own Terms -- Some Poetry, Pipers and Politics for the People -- References -- Index
Zugriffsoptionen:
Die folgenden Links führen aus den jeweiligen lokalen Bibliotheken zum Volltext:
The rise of food security up international political, societal and academic agendas has led to increasing interest in novel means of improving primary food production and reducing waste. There are however, also many 'post-farm gate' activities that are critical to food security, including processing, packaging, distributing, retailing, cooking and consuming. These activities all affect a range of important food security elements, notably availability, affordability and other aspects of access, nutrition and safety. Addressing the challenge of universal food security, in the context of a number of other policy goals (e.g. social, economic and environmental sustainability), is of keen interest to a range of UK stakeholders but requires an up-to-date evidence base and continuous innovation. An exercise was therefore conducted, under the auspices of the UK Global Food Security Programme, to identify priority research questions with a focus on the UK food system (though the outcomes may be broadly applicable to other developed nations). Emphasis was placed on incorporating a wide range of perspectives ('world views') from different stakeholder groups: policy, private sector, non-governmental organisations, advocacy groups and academia. A total of 456 individuals submitted 820 questions from which 100 were selected by a process of online voting and a three-stage workshop voting exercise. These 100 final questions were sorted into 10 themes and the 'top' question for each theme identified by a further voting exercise. This step also allowed four different stakeholder groups to select the top 7-8 questions from their perspectives. Results of these voting exercises are presented. It is clear from the wide range of questions prioritised in this exercise that the different stakeholder groups identified specific research needs on a range of post-farm gate activities and food security outcomes. Evidence needs related to food affordability, nutrition and food safety (all key elements of food security) featured highly in the exercise. While there were some questions relating to climate impacts on production, other important topics for food security (e.g. trade, transport, preference and cultural needs) were not viewed as strongly by the participants.
Publisher's version (útgefin grein) ; Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterized by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defense, telomere maintenance, signaling, and cell-cell adhesion. Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations. Methods: We conducted genome-wide analyses across three independent studies and meta-analyzed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression, and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF. Measurements and Main Results: We identified and replicated threenewgenome-wide significant (P<5×10-8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1, and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as yet unreported IPF susceptibility variants contribute to IPF susceptibility. Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF supports recent studies demonstrating the importance of mTOR signaling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility. ; R.J.A. is an Action for Pulmonary Fibrosis Research Fellow. L.V.W. holds a GSK/British Lung Foundation Chair in Respiratory Research. R.G.J. is supported by a National Institute for Health Research (NIHR) Research Professorship (NIHR reference RP-2017-08-ST2-014). I.N. is supported by the NHLBI (R01HL130796). B.G.-G. is funded by Agencia Canaria de Investigación, Innovación y Sociedad de la Información (TESIS2015010057) cofunded by European Social Fund. J.M.O. is supported by the NHLBI (K23HL138190). C.F. is supported by the Spanish Ministry of Science, Innovation and Universities (grant RTC-2017-6471-1; Ministerio de Ciencia e Innovacion/Agencia Estatal de Investigación/Fondo Europeo de Desarrollo Regional, Unión Europea) cofinanced by the European Regional Development Funds "A way of making Europe" from the European Union and by agreement OA17/008 with Instituto Tecnológico y de Energías Renovables to strengthen scientific and technological education, training, research, development and innovation in Genomics, Personalized Medicine and Biotechnology. The Spain Biobank array genotyping service was performed at CEGEN-PRB3-ISCIII, which is supported by PT17/0019, of the PE I+D+i 2013–2016, funded by Instituto de Salud Carlos III, and cofinanced by the European Regional Development Funds. P.L.M. is an Action for Pulmonary Fibrosis Research Fellow. M.O. is a fellow of the Parker B. Francis Foundation and a Scholar of the Michael Smith Foundation for Health Research. B.D.H. is supported by NIH K08 HL136928, Parker B. Francis Research Opportunity Award. M.H.C. and G.M.H. are supported by NHLBI grants R01HL113264 (M.H.C.), R01HL137927 (M.H.C.), R01HL135142 (M.H.C. and G.M.H.), R01111024 (G.M.H.), and R01130974 (G.M.H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The funding body has no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. T.M.M. is supported by an NIHR Clinician Scientist Fellowship (NIHR Ref: CS-2013-13-017) and a British Lung Foundation Chair in Respiratory Research (C17-3). M.D.T. is supported by a Wellcome Trust Investigator Award (WT202849/Z/16/Z). The research was partially supported by the NIHR Leicester Biomedical Research Centre; the views expressed are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR, or the Department of Health. I.P.H. was partially supported by the NIHR Nottingham Biomedical Research Centre; the views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. I.S. is supported by Medical Research Council (G1000861) and Asthma UK (AUK-PG-2013-188). D.F. was supported by an Intermediate Fellowship from the Wellcome Trust (097152/Z/11/Z). This work was partially supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre. V.N. is funded by an NIHR Clinical Lectureship. G.G. is supported by project grant 141513-051 from the Icelandic Research Fund and Landspitali Scientific Fund A-2016-023, A-2017-029, and A-2018-025. D.J.L. and A.M. are supported by Multi-Ethnic Study of Atherosclerosis (MESA) and the MESA SNP Health Association Resource (SHARe) project are conducted and supported by the NHLBI in collaboration with MESA investigators. Support for MESA is provided by contracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1-TR-001881, and DK063491. Funding for SHARe genotyping was provided by NHLBI Contract N02-HL-64278. Genotyping was performed at Affymetrix (Santa Clara, California) and the Broad Institute of Harvard and Massachusetts Institute of Technology (Boston, Massachusetts) using the Affymetrix Genome-Wide Human SNP Array 6.0. This work was supported by NIH grants R01 HL131565 (A.M.), R01 HL103676 (D.J.L.), and R01 HL137234 (D.J.L.). ; Peer Reviewed
Background Surgery is the main modality of cure for solid cancers and was prioritised to continue during COVID-19 outbreaks. This study aimed to identify immediate areas for system strengthening by comparing the delivery of elective cancer surgery during the COVID-19 pandemic in periods of lockdown versus light restriction. Methods This international, prospective, cohort study enrolled 20 006 adult (≥18 years) patients from 466 hospitals in 61 countries with 15 cancer types, who had a decision for curative surgery during the COVID-19 pandemic and were followed up until the point of surgery or cessation of follow-up (Aug 31, 2020). Average national Oxford COVID-19 Stringency Index scores were calculated to define the government response to COVID-19 for each patient for the period they awaited surgery, and classified into light restrictions (index 60). The primary outcome was the non-operation rate (defined as the proportion of patients who did not undergo planned surgery). Cox proportional-hazards regression models were used to explore the associations between lockdowns and non-operation. Intervals from diagnosis to surgery were compared across COVID-19 government response index groups. This study was registered at ClinicalTrials.gov, NCT04384926. Findings Of eligible patients awaiting surgery, 2003 (10·0%) of 20 006 did not receive surgery after a median follow-up of 23 weeks (IQR 16–30), all of whom had a COVID-19-related reason given for non-operation. Light restrictions were associated with a 0·6% non-operation rate (26 of 4521), moderate lockdowns with a 5·5% rate (201 of 3646; adjusted hazard ratio [HR] 0·81, 95% CI 0·77–0·84; p<0·0001), and full lockdowns with a 15·0% rate (1775 of 11 827; HR 0·51, 0·50–0·53; p<0·0001). In sensitivity analyses, including adjustment for SARS-CoV-2 case notification rates, moderate lockdowns (HR 0·84, 95% CI 0·80–0·88; p<0·001), and full lockdowns (0·57, 0·54–0·60; p<0·001), remained independently associated with non-operation. Surgery beyond 12 weeks from diagnosis in patients without neoadjuvant therapy increased during lockdowns (374 [9·1%] of 4521 in light restrictions, 317 [10·4%] of 3646 in moderate lockdowns, 2001 [23·8%] of 11 827 in full lockdowns), although there were no differences in resectability rates observed with longer delays. Interpretation Cancer surgery systems worldwide were fragile to lockdowns, with one in seven patients who were in regions with full lockdowns not undergoing planned surgery and experiencing longer preoperative delays. Although short-term oncological outcomes were not compromised in those selected for surgery, delays and non-operations might lead to long-term reductions in survival. During current and future periods of societal restriction, the resilience of elective surgery systems requires strengthening, which might include protected elective surgical pathways and long-term investment in surge capacity for acute care during public health emergencies to protect elective staff and services. Funding National Institute for Health Research Global Health Research Unit, Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, Medtronic, Sarcoma UK, The Urology Foundation, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research.
Background Surgery is the main modality of cure for solid cancers and was prioritised to continue during COVID-19 outbreaks. This study aimed to identify immediate areas for system strengthening by comparing the delivery of elective cancer surgery during the COVID-19 pandemic in periods of lockdown versus light restriction. Methods This international, prospective, cohort study enrolled 20 006 adult (≥18 years) patients from 466 hospitals in 61 countries with 15 cancer types, who had a decision for curative surgery during the COVID-19 pandemic and were followed up until the point of surgery or cessation of follow-up (Aug 31, 2020). Average national Oxford COVID-19 Stringency Index scores were calculated to define the government response to COVID-19 for each patient for the period they awaited surgery, and classified into light restrictions (index 60). The primary outcome was the non-operation rate (defined as the proportion of patients who did not undergo planned surgery). Cox proportional-hazards regression models were used to explore the associations between lockdowns and non-operation. Intervals from diagnosis to surgery were compared across COVID-19 government response index groups. This study was registered at ClinicalTrials.gov, NCT04384926. Findings Of eligible patients awaiting surgery, 2003 (10·0%) of 20 006 did not receive surgery after a median follow-up of 23 weeks (IQR 16–30), all of whom had a COVID-19-related reason given for non-operation. Light restrictions were associated with a 0·6% non-operation rate (26 of 4521), moderate lockdowns with a 5·5% rate (201 of 3646; adjusted hazard ratio [HR] 0·81, 95% CI 0·77–0·84; p<0·0001), and full lockdowns with a 15·0% rate (1775 of 11 827; HR 0·51, 0·50–0·53; p<0·0001). In sensitivity analyses, including adjustment for SARS-CoV-2 case notification rates, moderate lockdowns (HR 0·84, 95% CI 0·80–0·88; p<0·001), and full lockdowns (0·57, 0·54–0·60; p<0·001), remained independently associated with non-operation. Surgery beyond 12 weeks from diagnosis in patients without neoadjuvant therapy increased during lockdowns (374 [9·1%] of 4521 in light restrictions, 317 [10·4%] of 3646 in moderate lockdowns, 2001 [23·8%] of 11827 in full lockdowns), although there were no differences in resectability rates observed with longer delays. Interpretation Cancer surgery systems worldwide were fragile to lockdowns, with one in seven patients who were in regions with full lockdowns not undergoing planned surgery and experiencing longer preoperative delays. Although short-term oncological outcomes were not compromised in those selected for surgery, delays and non-operations might lead to long-term reductions in survival. During current and future periods of societal restriction, the resilience of elective surgery systems requires strengthening, which might include protected elective surgical pathways and long- term investment in surge capacity for acute care during public health emergencies to protect elective staff and services. Funding National Institute for Health Research Global Health Research Unit, Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, Medtronic, Sarcoma UK, The Urology Foundation, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research.
Background: Surgery is the main modality of cure for solid cancers and was prioritised to continue during COVID-19 outbreaks. This study aimed to identify immediate areas for system strengthening by comparing the delivery of elective cancer surgery during the COVID-19 pandemic in periods of lockdown versus light restriction. Methods: This international, prospective, cohort study enrolled 20 006 adult (≥18 years) patients from 466 hospitals in 61 countries with 15 cancer types, who had a decision for curative surgery during the COVID-19 pandemic and were followed up until the point of surgery or cessation of follow-up (Aug 31, 2020). Average national Oxford COVID-19 Stringency Index scores were calculated to define the government response to COVID-19 for each patient for the period they awaited surgery, and classified into light restrictions (index 60). The primary outcome was the non-operation rate (defined as the proportion of patients who did not undergo planned surgery). Cox proportional-hazards regression models were used to explore the associations between lockdowns and non-operation. Intervals from diagnosis to surgery were compared across COVID-19 government response index groups. This study was registered at ClinicalTrials.gov, NCT04384926. Findings: Of eligible patients awaiting surgery, 2003 (10·0%) of 20 006 did not receive surgery after a median follow-up of 23 weeks (IQR 16-30), all of whom had a COVID-19-related reason given for non-operation. Light restrictions were associated with a 0·6% non-operation rate (26 of 4521), moderate lockdowns with a 5·5% rate (201 of 3646; adjusted hazard ratio [HR] 0·81, 95% CI 0·77-0·84; p<0·0001), and full lockdowns with a 15·0% rate (1775 of 11 827; HR 0·51, 0·50-0·53; p<0·0001). In sensitivity analyses, including adjustment for SARS-CoV-2 case notification rates, moderate lockdowns (HR 0·84, 95% CI 0·80-0·88; p<0·001), and full lockdowns (0·57, 0·54-0·60; p<0·001), remained independently associated with non-operation. Surgery beyond 12 weeks from diagnosis in patients without neoadjuvant therapy increased during lockdowns (374 [9·1%] of 4521 in light restrictions, 317 [10·4%] of 3646 in moderate lockdowns, 2001 [23·8%] of 11 827 in full lockdowns), although there were no differences in resectability rates observed with longer delays. Interpretation: Cancer surgery systems worldwide were fragile to lockdowns, with one in seven patients who were in regions with full lockdowns not undergoing planned surgery and experiencing longer preoperative delays. Although short-term oncological outcomes were not compromised in those selected for surgery, delays and non-operations might lead to long-term reductions in survival. During current and future periods of societal restriction, the resilience of elective surgery systems requires strengthening, which might include protected elective surgical pathways and long-term investment in surge capacity for acute care during public health emergencies to protect elective staff and services.
ANPCyT, Argentina ; YerPhI, Armenia ; ARC, Australia ; BMWFW, Austria ; FWF, Austria ; ANAS, Azerbaijan ; SSTC, Belarus ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; NSERC, Canada ; NRC, Canada ; CFI, Canada ; CERN ; CONICYT, Chile ; CAS, China ; MOST, China ; NSFC, China ; COLCIENCIAS, Colombia ; MSMT CR, Czech Republic ; MPO CR, Czech Republic ; VSC CR, Czech Republic ; DNRF, Denmark ; DNSRC, Denmark ; IN2P3-CNRS, CEA-DRF/IRFU, France ; SRNSFG, Georgia ; BMBF, Germany ; HGF, Germany ; MPG, Germany ; GSRT, Greece ; RGC, Hong Kong SAR, China ; ISF, Israel ; Benoziyo Center, Israel ; INFN, Italy ; MEXT, Japan ; JSPS, Japan ; CNRST, Morocco ; NWO, Netherlands ; RCN, Norway ; MNiSW, Poland ; NCN, Poland ; FCT, Portugal ; MNE/IFA, Romania ; MES of Russia, Russian Federation ; NRC KI, Russian Federation ; JINR ; MESTD, Serbia ; MSSR, Slovakia ; ARRS, Slovenia ; MIZS, Slovenia ; DST/NRF, South Africa ; MINECO, Spain ; SRC, Sweden ; Wallenberg Foundation, Sweden ; SERI, Switzerland ; SNSF, Switzerland ; Canton of Bern, Switzerland ; MOST, Taiwan ; TAEK, Turkey ; STFC, United Kingdom ; DOE, United States of America ; NSF, United States of America ; BCKDF, Canada ; CANARIE, Canada ; CRC, Canada ; Compute Canada, Canada ; COST, European Union ; ERC, European Union ; ERDF, European Union ; Horizon 2020, European Union ; Marie Sk lodowska-Curie Actions, European Union ; Investissements d' Avenir Labex and Idex, ANR, France ; DFG, Germany ; AvH Foundation, Germany ; Greek NSRF, Greece ; BSF-NSF, Israel ; GIF, Israel ; CERCA Programme Generalitat de Catalunya, Spain ; Royal Society, United Kingdom ; Leverhulme Trust, United Kingdom ; BMBWF (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FAPERGS (Brazil) ; MES (Bulgaria) ; CAS (China) ; MoST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; SENESCYT (Ecuador) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; NKFIA (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; MSIP (Republic of Korea) ; NRF (Republic of Korea) ; MES (Latvia) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; BUAP (Mexico) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; LNS (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MOS (Montenegro) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; NRC KI (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; PCTI (Spain) ; FEDER (Spain) ; MOSTR (Sri Lanka) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TAEK (Turkey) ; NASU (Ukraine) ; SFFR (Ukraine) ; STFC (United Kingdom ; DOE (U.S.A.) ; NSF (U.S.A.) ; Marie-Curie programme ; Horizon 2020 Grant (European Union) ; Leventis Foundation ; A.P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; F.R.S.-FNRS (Belgium) ; Beijing Municipal Science & Technology Commission ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Hungarian Academy of Sciences (Hungary) ; New National Excellence Program UNKP (Hungary) ; Council of Science and Industrial Research, India ; HOMING PLUS programme of the Foundation for Polish Science ; European Union, Regional Development Fund ; Mobility Plus programme of the Ministry of Science and Higher Education ; National Science Center (Poland) ; National Priorities Research Program by Qatar National Research Fund ; Programa Estatal de Fomento de la Investigacion Cientfica y Tecnica de Excelencia Maria de Maeztu ; Programa Severo Ochoa del Principado de Asturias ; EU-ESF ; Greek NSRF ; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand) ; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand) ; Welch Foundation ; Weston Havens Foundation (U.S.A.) ; Canton of Geneva, Switzerland ; Herakleitos programme ; Thales programme ; Aristeia programme ; European Research Council (European Union) ; Horizon 2020 Grant (European Union): 675440 ; FWO (Belgium): 30820817 ; Beijing Municipal Science & Technology Commission: Z181100004218003 ; NKFIA (Hungary): 123842 ; NKFIA (Hungary): 123959 ; NKFIA (Hungary): 124845 ; NKFIA (Hungary): 124850 ; NKFIA (Hungary): 125105 ; National Science Center (Poland): Harmonia 2014/14/M/ST2/00428 ; National Science Center (Poland): Opus 2014/13/B/ST2/02543 ; National Science Center (Poland): 2014/15/B/ST2/03998 ; National Science Center (Poland): 2015/19/B/ST2/02861 ; National Science Center (Poland): Sonata-bis 2012/07/E/ST2/01406 ; Programa Estatal de Fomento de la Investigacion Cientfica y Tecnica de Excelencia Maria de Maeztu: MDM-2015-0509 ; Welch Foundation: C-1845 ; This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| « |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.