Cost and schedule implications of multinational coproduction
In: Rand Paper, P-6998
In: Rand Library Collection
89 Ergebnisse
Sortierung:
In: Rand Paper, P-6998
In: Rand Library Collection
World Affairs Online
In: Rand Report, R-2345-AF
World Affairs Online
In: Latin American research review: LARR ; the journal of the Latin American Studies Association (LASA), Band 34, Heft 3, S. 179-196
ISSN: 0023-8791
Enthält Rezensionen u.a. von: Binford, Leigh: The El Mozote massacre. - Tuscon/Ariz. : Univ. of Arizona Press, 1996. - 263 S
World Affairs Online
In: Reproductive sciences: RS : the official journal of the Society for Reproductive Investigation, Band 20, Heft 3, S. 299-307
ISSN: 1933-7205
In: Strategic insights, Band 5, Heft 1, S. ?
ISSN: 1938-1670
World Affairs Online
iTRAQ labeling of peptides is widely used for quantitative comparison of biological samples using mass spectrometry. However, iTRAQ determined protein ratios have varying credibility depending on the number and quality of the peptide ratios used to generate them, and accounting for this becomes problematic particularly in the multirun scenario needed for larger scale biological studies. One approach to this problem relies on the use of sophisticated statistical global models using peptide ratios rather than working directly with the protein ratios, but these yield complex models whose solution relies on computational approaches such as stage-wise regression, which are nontrivial to run and verify. Here we evaluate an alternative pragmatic approach to finding differentially expressed proteins based on combining protein ratio p-values across experiments in a fashion similar to running a meta-analysis across different iTRAQ runs. Our approach uses the well-established Stouffer's Z-transform for combining p-values, alongside a ratio trend consistency measure, which we introduce. We evaluate this method with data from two iTRAQ experiments using plant and animal models. We show that in the specific context of iTRAQ data analysis this method has advantages of simplicity, high tolerance of run variability, low false discovery rate, and emphasis on proteins identified with high confidence. ; This work was supported through access to facilities managed by Bioplatforms Australia and funded by the Australian Government National Collaborative Research Infrastructure Strategy and Education Investment Fund Super Science Initiative.
BASE
iTRAQ labeling of peptides is widely used for quantitative comparison of biological samples using mass spectrometry. However, iTRAQ determined protein ratios have varying credibility depending on the number and quality of the peptide ratios used to generate them, and accounting for this becomes problematic particularly in the multirun scenario needed for larger scale biological studies. One approach to this problem relies on the use of sophisticated statistical global models using peptide ratios rather than working directly with the protein ratios, but these yield complex models whose solution relies on computational approaches such as stage-wise regression, which are nontrivial to run and verify. Here we evaluate an alternative pragmatic approach to finding differentially expressed proteins based on combining protein ratio p-values across experiments in a fashion similar to running a meta-analysis across different iTRAQ runs. Our approach uses the well-established Stouffer's Z-transform for combining p-values, alongside a ratio trend consistency measure, which we introduce. We evaluate this method with data from two iTRAQ experiments using plant and animal models. We show that in the specific context of iTRAQ data analysis this method has advantages of simplicity, high tolerance of run variability, low false discovery rate, and emphasis on proteins identified with high confidence. ; This work was supported through access to facilities managed by Bioplatforms Australia and funded by the Australian Government National Collaborative Research Infrastructure Strategy and Education Investment Fund Super Science Initiative.
BASE
In: The Journal of sex research, Band 38, Heft 1, S. 75-86
ISSN: 1559-8519
In: Rand Report, R-3276-AF
World Affairs Online
In: Social studies: a periodical for teachers and administrators, Band 90, Heft 1, S. 5-17
ISSN: 2152-405X
In: Studies in comparative international development: SCID, Band 32, Heft 4, S. 101-123
ISSN: 1936-6167
In: Journal of international affairs, Band 46, Heft 2, S. 289-499
ISSN: 0022-197X
World Affairs Online
During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.
BASE
During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.
BASE