Australia and Aotearoa New Zealand have the highest incidence of melanoma and KC in the world. We undertook a cost-of-illness analysis using Markov decision–analytic models separately for melanoma and keratinocyte skin cancer (KC) for each country. Using clinical pathways, the probabilities and unit costs of each health service and medicine for skin cancer management were applied. We estimated mean costs and 95% uncertainty intervals (95% UI) using Monte Carlo simulation. In Australia, the mean first-year costs of melanoma per patient ranged from AU$644 (95%UI: $642, $647) for melanoma in situ to AU$100,725 (95%UI: $84,288, $119,070) for unresectable stage III/IV disease. Australian-wide direct costs to the Government for newly diagnosed patients with melanoma were AU$397.9 m and AU$426.2 m for KCs, a total of AU$824.0 m. The mean costs per patient for melanoma ranged from NZ$1450 (95%UI: $1445, $1456) for melanoma in situ to NZ$77,828 (95%UI $62,525, $94,718) for unresectable stage III/IV disease. The estimated total cost to New Zealand in 2021 for new patients with melanoma was NZ$51.2 m, and for KCs, was NZ$129.4 m, with a total combined cost of NZ$180.5 m. These up-to-date national healthcare costs of melanoma and KC in Australia and New Zealand accentuate the savings potential of successful prevention strategies for skin cancer.
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 229, S. 113071
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 179, S. 104-110
As a biological, cultural, and social entity, the human fetus is a multifaceted subject which calls for equally diverse perspectives to fully understand. Anthropology of the Fetus seeks to achieve this by bringing together specialists in biological anthropology, archaeology, and cultural anthropology. Contributors draw on research in prehistoric, historic, and contemporary sites in Europe, Asia, North Africa, and North America to explore the biological and cultural phenomenon of the fetus, raising methodological and theoretical concerns with the ultimate goal of developing a holistic anthropology of the fetus
Zugriffsoptionen:
Die folgenden Links führen aus den jeweiligen lokalen Bibliotheken zum Volltext:
U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas ; Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; Excellence Cluster Universe ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Accelerator Laboratory, Stanford University ; University of Sussex ; Texas A M University ; OzDES Membership Consortium ; National Science Foundation ; MINECO ; European Union ; Centres de Recerce de Catalunya (CERCA) program of the Generalitat de Catalunya ; European Research Council under the European Union's Seventh Framework Program (FP7) ; Australian Research Council Centre of Excellence for All-sky Astrophysics ; U.S. Department of Energy, Office of Science, Office of High Energy Physics ; Office of Science of the U.S. Department of Energy ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-88861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2012-0234 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509, ; European Research Council under the European Union's Seventh Framework Program (FP7): 240672 ; European Research Council under the European Union's Seventh Framework Program (FP7): 291329 ; European Research Council under the European Union's Seventh Framework Program (FP7): 306478 ; Australian Research Council Centre of Excellence for All-sky Astrophysics: CE110001020 ; U.S. Department of Energy, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359 ; Office of Science of the U.S. Department of Energy: DE-AC02-05CH11231 ; We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg(2) of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat Lambda CDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for Lambda CDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 x 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S-8 equivalent to sigma(8) (Omega(m)/0.3)(0.5) = 0.773(-0.020)(+0.026) and Omega(m) = 0.267(-0.017)(+0.030) for Lambda CDM; for wCDM, we find S-8 = 0.782(-0.024)(+0.036) , Omega(m) = 0.284(-0.030)(+0.033), and w = -0.82(-0.20)(+0.21) at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S-8 and Omega(m) are lower than the central values from Planck for both Lambda CDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of Lambda CDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S-8 = 0.802 +/- 0.012 and Omega(m) = 0.298 +/- 0.007 in Lambda CDM and w = -1.00(-0.04)(+0.05) in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the Lambda CDM model and extensions such as a time-varying equation of state of dark energy or modified gravity.