[Background]: There has been an emergence and expansion of tick-borne diseases in Europe, Asia and North America in recent years, including Lyme disease, tick-borne encephalitis and human anaplasmosis. The primary vectors implicated are hard ticks of the genus Ixodes. Although much is known about the host response to these bacterial and viral pathogens, there is limited knowledge of the cellular responses to infection within the tick vector. The bacterium Anaplasma phagocytophilum is able to bypass apoptotic processes in ticks, enabling infection to proceed. However, the tick cellular responses to infection with the flaviviruses tick-borne encephalitis virus (TBEV) and louping ill virus (LIV), which cause tick-borne encephalitis and louping ill respectively, are less clear. [Results]: Infection and transcriptional analysis of the Ixodes ricinus tick cell line IRE/CTVM20 with the viruses LIV and TBEV, and the bacterium A. phagocytophilum, identified activation of common and distinct cellular pathways. In particular, commonly-upregulated genes included those that modulate apoptotic pathways, putative anti-pathogen genes, and genes that influence the tick innate immune response, including selective activation of toll genes. [Conclusion]: These data provide an insight into potential key genes involved in the tick cellular response to viral or bacterial infection, which may promote cell survival and host resistance. ; This work was jointly funded by the European Commission Seventh Framework Programme under ANTIGONE (project 278976), the Department for Environment, Food and Rural Affairs (Defra), Scottish Government and Welsh Government under project SE4112, EUH2020-funded Research Infrastructure Grant 'European Virus Archive Global (EVAg)' (H2020 grant agreement number 653316) and the INIA grant E-RTA2013-C04-04 (FEDER cofunded, Spain). Lesley Bell-Sakyi is supported by the United Kingdom Biotechnology and Biological Sciences Research Council's Institute Strategic Programme Grant (BBS/E/I/0000174) to the Pirbright Institute. ; Peer Reviewed
Maria had been with her homestay family for 10 days when she found out that her host mother and brother were HIV positive. She asked to be moved, and the program directors complied. Another student, on another program, declared his HIV-positive status on his application form. Under American law, AIDS is not a reportable disease, and confidentiality policy obligated the director to place the student without informing his host family of the risk or educating them about precautions. What messages are we sending? Are the lives and legal principles of international students superior to those of the host nationals?
In: International Journal of Emerging Technologies and Innovative Research (www.jetir.org | UGC and issn Approved), ISSN:2349-5162, Vol.8, Issue 3, page no. pp888-895, March-2021
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. ; Part of the research included in this review was supported by the Ministerio de Economia y Competitividad (Spain) grant BFU2016-79892-P and the European Union (EU) Seventh Framework Programme (FP7) ANTIGONE project number 278976. SA and AD would like to acknowledge FCT for funds to GHTM - UID/Multi/04413/2013. MV was supported by the Research Plan of the University of Castilla-La Mancha (UCLM), Spain. ; Peer reviewed ; Peer Reviewed
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4thAssessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts.
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts.
Nonhomogeneous Markov models of nucleotide substitution have received scant attention. Here we explore the possibility of using nonhomogeneous models to identify host shift nodes along phylogenetic trees of pathogens evolving in different hosts. It has been noticed that influenza viruses show marked differences in nucleotide composition in human and avian hosts. We take advantage of this fact to identify the host shift event that led to the 1918 'Spanish' influenza. This disease killed over 50 million people worldwide, ranking it as the deadliest pandemic in recorded history. Our model suggests that the eight RNA segments which eventually became the 1918 viral genome were introduced into a mammalian host around 1882-1913. The viruses later diverged into the classical swine and human H1N1 influenza lineages around 1913-1915. The last common ancestor of human strains dates from February 1917 to April 1918. Because pigs are more readily infected with avian influenza viruses than humans, it would seem that they were the original recipient of the virus. This would suggest that the virus was introduced into humans sometime between 1913 and 1918. ; This work was supported by the Medical Research Council, UK, and the European Union FP6 FLUPOL project number 044263.