Periodic calibrations of Energy Measurement Systems (EMS) installed in locomotives must be carried out to demonstrate the required accuracy established in the EN 50463-2 standard according to European Parliament and Council Directive 2008/57/EC on the interoperability of rail systems within the Community. As a result of the work performed in the "MyRailS" EURAMET project an AC calibration facility was developed consisting of a fictive power source was developed. This fictive power source can generate distorted sinusoidal voltages up to 25 kV-50 Hz and 15 kV-16.7 Hz as well as distorted sinusoidal currents up to 500 A with harmonic content up to 5 kHz or phase-fired current waveform stated in EN50463-2 standard. These waveforms are representative of those that appear during periods of acceleration and breaking of the train. Reference measuring systems have been designed and built consisting of high voltage and high current transducers adapted to multimeters, which function as digital recorders to acquire synchronized voltage and current signals. An approved procedure has been developed and an in-depth uncertainty analysis has been performed to achieve a set of uncertainty formulas considering the influence parameters. Different influence parameters have been analyzed to evaluate uncertainty contributions for each quantity to be measured: rms voltage, rms current, active power, apparent power and non-active power of distorted voltage and current waveforms. The resulting calculated global expanded uncertainty for the developed Energy Measuring Function calibration set up has been better than 0.5% for distorted waveforms. This paper is focused on presenting the complete set of expressions and formulas developed for the different influence parameters, necessary for uncertainty budget calculation of an Energy Measuring Function calibration.
Periodic calibrations of Energy Measurement Systems (EMS) installed in locomotives must be carried out to demonstrate the required accuracy established in the EN 50463-2 standard according to European Parliament and Council Directive 2008/57/EC on the interoperability of rail systems within the Community. As a result of the work performed in the "MyRailS" EURAMET project an AC calibration facility was developed consisting of a fictive power source was developed. This fictive power source can generate distorted sinusoidal voltages up to 25 kV-50 Hz and 15 kV-16.7 Hz as well as distorted sinusoidal currents up to 500 A with harmonic content up to 5 kHz or phase-fired current waveform stated in EN50463-2 standard. These waveforms are representative of those that appear during periods of acceleration and breaking of the train. Reference measuring systems have been designed and built consisting of high voltage and high current transducers adapted to multimeters, which function as digital recorders to acquire synchronized voltage and current signals. An approved procedure has been developed and an in-depth uncertainty analysis has been performed to achieve a set of uncertainty formulas considering the influence parameters. Different influence parameters have been analyzed to evaluate uncertainty contributions for each quantity to be measured: rms voltage, rms current, active power, apparent power and non-active power of distorted voltage and current waveforms. The resulting calculated global expanded uncertainty for the developed Energy Measuring Function calibration set up has been better than 0.5% for distorted waveforms. This paper is focused on presenting the complete set of expressions and formulas developed for the different influence parameters, necessary for uncertainty budget calculation of an Energy Measuring Function calibration.
This article focuses on the evolutionary dynamics of the world economy after the Second World War to current day by reviewing the subject in evolutionary and holistic terms. In particular, its purpose is to examine the structuring of the current crisis and the prospects for overcoming it by advancing toward a new developmental phase, a new sustainable model of global development. We articulate our approach precisely at the link between the interconnection and the dialectic interdependence of the central structural components of global dynamics. In this direction, we introduce, propose, and utilize a three-sided structural analysis of global dynamics, a triptych. In particular, we claim that the changes in the global system are imprinted and can be studied at three co-located and dialectically interwoven central structural levels: at the level of current international regimes, at the level of central models of development and crisis, and at the level of the dominant types of business innovation. As a whole and on every level, the structural changes define and form in the background the evolutionary dynamics of the world economy, and thus by extension prescribe the conditions for the global system to construct the trajectory to exit from its current crisis.
Предложена и апробирована новая схема построения мощного сверхвысоковольтного сильноточного генератора импульсных напряжений и токов ГИНТ-2 наружной установки, формирующего на активно-индуктивной нагрузке микросекундные импульсы напряжения амплитудой до ±2 МВ и тока амплитудой до ±150 кА при запасаемой электрической энергии до 1 МДж. Данный генератор построен на основе размещенного в полевых условиях модернизированного стационарного генератора ГИНТ-4 на номинальное напряжение ±4 МВ и номинальный ток амплитудой ±75 кА с запасаемой в его высоковольтных конденсаторах электрической энергией номинальным значением 1 МДж. Приведены описания схемных и конструктивных решений генератора ГИНТ-2, позволяющих обеспечить при сохранении основной электротехнической элементной базы генератора ГИНТ-4 получение на длинном разрядном воздушном промежутке двухэлектродной системы «игла-плоскость» импульсов тока микросекундной длительности с удвоенной амплитудой по сравнению с параметрами импульсов тока, формируемых в разрядной цепи генератора ГИНТ-4 с использованием аналогичной двухэлектродной системы. Перевод генератора ГИНТ-4 в режим работы генератора ГИНТ-2 с уменьшенным вдвое уровнем выходного импульсного напряжения и увеличенным вдвое уровнем выходного импульсного тока обусловлен требованиями стандартов НАТО AECTP-250: 2014 и США MIL-STD-464C: 2010 при испытаниях технических объектов на электромагнитную совместимость и невосприимчивость к воздействию на них мощных электромагнитных помех от атмосферных грозовых сильноточных электрических разрядов (молний). ; Purpose. Development and evaluation, on the basis of existing ultra-high-voltage generator of pulsed voltages and currents of GINT-4 type, of the new scheme of design of its charging-discharging circuit (CDC), and creation of modernized powerful ultra-high-voltage high-current generator of GINT-2 type to form microsecond voltage pulses with amplitudes up to ±2 MV and current with amplitude up to ±150 kA in the electrical load, with electrical energy stored in its capacitive energy storage (CES) up to 1 MJ. Methodology. Fundamentals of theoretical and applied electrical engineering, electrical power engineering, electrophysical principles of high-voltage and high pulsed current engineering, fundamentals of electromagnetic compatibility (EMC), instrument engineering, high-voltage instrumentation and standardization. Results. The new scheme of design of CDC of the modernized powerful ultra-high-voltage, heavy-current generator of GINT-2 type of outdoor placement, that allows obtaining, with preservation of the main electrotechnical elemental base of existing powerful prototype generator GINT-4 (rated output voltage ±4 MV with rated electrical energy stored in CES of 1 MJ and maximal amplitude of output current pulse in electrical load up to ±75 kA) pulses of current of microsecond duration with doubled amplitude (up to ±150 kA) in the long (from 1 to 4 m length) air gap of standard two-electrode discharging «needle-plane» system, in comparison with parameters of current pulses with amplitudes up to ±75 kA that are formed in the discharging circuit of generator of GINT-4 type with the use of the analogous air discharging system, has been developed. Experimental evaluations of the developed new discharging circuit in CDC of the modernized generator of GINT-4 type has been performed in field conditions, and its advantages over the old discharging circuit in composition of CDC of generator of GINT-4 type have been shown. Calculated evaluations of rise rates of high pulsed current (HPC) in plasma channel of air spark discharge of CES with energy up to 1 MJ of generator of GINT-2 type, and strength of electric and magnetic field that are formed around this high-current channel of spark discharge and are powerful electromagnetic interference (PEMI) for objects of armaments and military equipment (OAME) were performed. It was shown that rise rates of HPC obtained for generator GINT-2 in the channel of long air spark discharge (of artificial lightning) and PEMI around this channel practically satisfy strict requirements of the NATO Standards AESTP-250: 2014 and USA MIL-STD-464C: 2010. Originality. The new scheme of design of CDC in composition of the modernized powerful ultra-high-voltage high-current generator of GINT-2 type (developer – Research & Design Institute «Molniya» of NTU «KhPI»), satisfying requirements of the mentioned standards for full-scale tests of OAME for EMC and immunity to action on them of PEMI from long atmospheric spark electric discharges (lightning) was developed for the first time. Practical value. Application of the created ultra-high-voltage high-current generator of GINT-2 type in tests of OAME for EMC and immunity to action on them of PEMI from artificial lightning will assist increase in reliability of OAME functioning in conditions of damaging (destabilizing) action on them HPC and PEMI of natural and artificial origin.
Purpose. Development and evaluation, on the basis of existing ultra-high-voltage generator of pulsed voltages and currents of GINT-4 type, of the new scheme of design of its charging-discharging circuit (CDC), and creation of modernized powerful ultra-high-voltage high-current generator of GINT-2 type to form microsecond voltage pulses with amplitudes up to ±2 MV and current with amplitude up to ±150 kA in the electrical load, with electrical energy stored in its capacitive energy storage (CES) up to 1 MJ. Methodology. Fundamentals of theoretical and applied electrical engineering, electrical power engineering, electrophysical principles of high-voltage and high pulsed current engineering, fundamentals of electromagnetic compatibility (EMC), instrument engineering, high-voltage instrumentation and standardization. Results. The new scheme of design of CDC of the modernized powerful ultra-high-voltage, heavy-current generator of GINT-2 type of outdoor placement, that allows obtaining, with preservation of the main electrotechnical elemental base of existing powerful prototype generator GINT-4 (rated output voltage ±4 MV with rated electrical energy stored in CES of 1 MJ and maximal amplitude of output current pulse in electrical load up to ±75 kA) pulses of current of microsecond duration with doubled amplitude (up to ±150 kA) in the long (from 1 to 4 m length) air gap of standard two-electrode discharging «needle-plane» system, in comparison with parameters of current pulses with amplitudes up to ±75 kA that are formed in the discharging circuit of generator of GINT-4 type with the use of the analogous air discharging system, has been developed. Experimental evaluations of the developed new discharging circuit in CDC of the modernized generator of GINT-4 type has been performed in field conditions, and its advantages over the old discharging circuit in composition of CDC of generator of GINT-4 type have been shown. Calculated evaluations of rise rates of high pulsed current (HPC) in plasma channel of air spark discharge of CES with energy up to 1 MJ of generator of GINT-2 type, and strength of electric and magnetic field that are formed around this high-current channel of spark discharge and are powerful electromagnetic interference (PEMI) for objects of armaments and military equipment (OAME) were performed. It was shown that rise rates of HPC obtained for generator GINT-2 in the channel of long air spark discharge (of artificial lightning) and PEMI around this channel practically satisfy strict requirements of the NATO Standards AESTP-250: 2014 and USA MIL-STD-464C: 2010. Originality. The new scheme of design of CDC in composition of the modernized powerful ultra-high-voltage high-current generator of GINT-2 type (developer – Research & Design Institute «Molniya» of NTU «KhPI»), satisfying requirements of the mentioned standards for full-scale tests of OAME for EMC and immunity to action on them of PEMI from long atmospheric spark electric discharges (lightning) was developed for the first time. Practical value. Application of the created ultra-high-voltage high-current generator of GINT-2 type in tests of OAME for EMC and immunity to action on them of PEMI from artificial lightning will assist increase in reliability of OAME functioning in conditions of damaging (destabilizing) action on them HPC and PEMI of natural and artificial origin. ; Предложена и апробирована новая схема построения мощного сверхвысоковольтного сильноточного генератора импульсных напряжений и токов ГИНТ-2 наружной установки, формирующего на активно-индуктивной нагрузке микросекундные импульсы напряжения амплитудой до ±2 МВ и тока амплитудой до ±150 кА при запасаемой электрической энергии до 1 МДж. Данный генератор построен на основе размещенного в полевых условиях модернизированного стационарного генератора ГИНТ-4 на номинальное напряжение ±4 МВ и номинальный ток амплитудой ±75 кА с запасаемой в его высоковольтных конденсаторах электрической энергией номинальным значением 1 МДж. Приведены описания схемных и конструктивных решений генератора ГИНТ-2, позволяющих обеспечить при сохранении основной электротехнической элементной базы генератора ГИНТ-4 получение на длинном разрядном воздушном промежутке двухэлектродной системы «игла-плоскость» импульсов тока микросекундной длительности с удвоенной амплитудой по сравнению с параметрами импульсов тока, формируемых в разрядной цепи генератора ГИНТ-4 с использованием аналогичной двухэлектродной системы. Перевод генератора ГИНТ-4 в режим работы генератора ГИНТ-2 с уменьшенным вдвое уровнем выходного импульсного напряжения и увеличенным вдвое уровнем выходного импульсного тока обусловлен требованиями стандартов НАТО AECTP-250: 2014 и США MIL-STD-464C: 2010 при испытаниях технических объектов на электромагнитную совместимость и невосприимчивость к воздействию на них мощных электромагнитных помех от атмосферных грозовых сильноточных электрических разрядов (молний).
Purpose. Development and evaluation, on the basis of existing ultra-high-voltage generator of pulsed voltages and currents of GINT-4 type, of the new scheme of design of its charging-discharging circuit (CDC), and creation of modernized powerful ultra-high-voltage high-current generator of GINT-2 type to form microsecond voltage pulses with amplitudes up to ±2 MV and current with amplitude up to ±150 kA in the electrical load, with electrical energy stored in its capacitive energy storage (CES) up to 1 MJ. Methodology. Fundamentals of theoretical and applied electrical engineering, electrical power engineering, electrophysical principles of high-voltage and high pulsed current engineering, fundamentals of electromagnetic compatibility (EMC), instrument engineering, high-voltage instrumentation and standardization. Results. The new scheme of design of CDC of the modernized powerful ultra-high-voltage, heavy-current generator of GINT-2 type of outdoor placement, that allows obtaining, with preservation of the main electrotechnical elemental base of existing powerful prototype generator GINT-4 (rated output voltage ±4 MV with rated electrical energy stored in CES of 1 MJ and maximal amplitude of output current pulse in electrical load up to ±75 kA) pulses of current of microsecond duration with doubled amplitude (up to ±150 kA) in the long (from 1 to 4 m length) air gap of standard two-electrode discharging «needle-plane» system, in comparison with parameters of current pulses with amplitudes up to ±75 kA that are formed in the discharging circuit of generator of GINT-4 type with the use of the analogous air discharging system, has been developed. Experimental evaluations of the developed new discharging circuit in CDC of the modernized generator of GINT-4 type has been performed in field conditions, and its advantages over the old discharging circuit in composition of CDC of generator of GINT-4 type have been shown. Calculated evaluations of rise rates of high pulsed current (HPC) in plasma channel of air spark discharge of CES with energy up to 1 MJ of generator of GINT-2 type, and strength of electric and magnetic field that are formed around this high-current channel of spark discharge and are powerful electromagnetic interference (PEMI) for objects of armaments and military equipment (OAME) were performed. It was shown that rise rates of HPC obtained for generator GINT-2 in the channel of long air spark discharge (of artificial lightning) and PEMI around this channel practically satisfy strict requirements of the NATO Standards AESTP-250: 2014 and USA MIL-STD-464C: 2010. Originality. The new scheme of design of CDC in composition of the modernized powerful ultra-high-voltage high-current generator of GINT-2 type (developer – Research & Design Institute «Molniya» of NTU «KhPI»), satisfying requirements of the mentioned standards for full-scale tests of OAME for EMC and immunity to action on them of PEMI from long atmospheric spark electric discharges (lightning) was developed for the first time. Practical value. Application of the created ultra-high-voltage high-current generator of GINT-2 type in tests of OAME for EMC and immunity to action on them of PEMI from artificial lightning will assist increase in reliability of OAME functioning in conditions of damaging (destabilizing) action on them HPC and PEMI of natural and artificial origin. ; Предложена и апробирована новая схема построения мощного сверхвысоковольтного сильноточного генератора импульсных напряжений и токов ГИНТ-2 наружной установки, формирующего на активно-индуктивной нагрузке микросекундные импульсы напряжения амплитудой до ±2 МВ и тока амплитудой до ±150 кА при запасаемой электрической энергии до 1 МДж. Данный генератор построен на основе размещенного в полевых условиях модернизированного стационарного генератора ГИНТ-4 на номинальное напряжение ±4 МВ и номинальный ток амплитудой ±75 кА с запасаемой в его высоковольтных конденсаторах электрической энергией номинальным значением 1 МДж. Приведены описания схемных и конструктивных решений генератора ГИНТ-2, позволяющих обеспечить при сохранении основной электротехнической элементной базы генератора ГИНТ-4 получение на длинном разрядном воздушном промежутке двухэлектродной системы «игла-плоскость» импульсов тока микросекундной длительности с удвоенной амплитудой по сравнению с параметрами импульсов тока, формируемых в разрядной цепи генератора ГИНТ-4 с использованием аналогичной двухэлектродной системы. Перевод генератора ГИНТ-4 в режим работы генератора ГИНТ-2 с уменьшенным вдвое уровнем выходного импульсного напряжения и увеличенным вдвое уровнем выходного импульсного тока обусловлен требованиями стандартов НАТО AECTP-250: 2014 и США MIL-STD-464C: 2010 при испытаниях технических объектов на электромагнитную совместимость и невосприимчивость к воздействию на них мощных электромагнитных помех от атмосферных грозовых сильноточных электрических разрядов (молний).
Предложена и апробирована новая схема построения мощного сверхвысоковольтного сильноточного генератора импульсных напряжений и токов ГИНТ-2 наружной установки, формирующего на активно-индуктивной нагрузке микросекундные импульсы напряжения амплитудой до ±2 МВ и тока амплитудой до ±150 кА при запасаемой электрической энергии до 1 МДж. Данный генератор построен на основе размещенного в полевых условиях модернизированного стационарного генератора ГИНТ-4 на номинальное напряжение ±4 МВ и номинальный ток амплитудой ±75 кА с запасаемой в его высоковольтных конденсаторах электрической энергией номинальным значением 1 МДж. Приведены описания схемных и конструктивных решений генератора ГИНТ-2, позволяющих обеспечить при сохранении основной электротехнической элементной базы генератора ГИНТ-4 получение на длинном разрядном воздушном промежутке двухэлектродной системы«игла-плоскость» импульсов тока микросекундной длительности с удвоенной амплитудой по сравнению с параметрами импульсов тока, формируемых в разрядной цепи генератора ГИНТ-4 с использованием аналогичной двухэлектродной системы. Перевод генератора ГИНТ-4 в режим работы генератора ГИНТ-2 с уменьшенным вдвое уровнем выходного импульсного напряжения и увеличенным вдвое уровнем выходного импульсного тока обусловлен требованиями стандартов НАТОAECTP-250: 2014 и СШАMIL-STD-464C: 2010 при испытаниях технических объектов на электромагнитную совместимость и невосприимчивость к воздействию на них мощных электромагнитных помех от атмосферных грозовых сильноточных электрических разрядов (молний). ; The new scheme of design of CDC of the modernized powerful ultra-high-voltage, heavy-current generator of GINT-2 type of outdoor placement, that allows obtaining, with preservation of the main electrotechnical elemental base of existing powerful prototype generator GINT-4 (rated output voltage ±4 MV with rated electrical energy stored in CES of 1 MJ and maximal amplitude of output current pulse in electrical load up to ±75 kA) pulses of current of microsec-ond duration with doubled amplitude (up to ±150 kA) in the long (from 1 to 4 m length) air gap of standard two-electrode dis-charging «needle-plane» system, in comparison with parameters of current pulses with amplitudes up to ±75 kA that are formed in the discharging circuit of generator of GINT-4 type with the use of the analogous air discharging system, has been devel-oped. Experimental evaluations of the developed new discharging circuit in CDC of the modernized generator of GINT-4 type has been performed in field conditions, and its advantages over the old discharging circuit in composition of CDC of generator of GINT-4 type have been shown. Calculated evaluations of rise rates of high pulsed current (HPC) in plasma channel of air spark discharge of CES with energy up to 1 MJ of generator of GINT-2 type, and strength of electric and magnetic field that are formed around this high-current channel of spark discharge and are powerful electromagnetic interference (PEMI) for objects of armaments and military equipment (OAME) were performed. It was shown that rise rates of HPC obtained for generator GINT-2 in the channel of long air spark discharge (of artificial light-ning) and PEMI around this channel practically satisfy strict requirements of the NATO Standards AESTP-250: 2014 and USA MIL-STD-464C: 2010.