Securitization, Covered Bonds and the Risk Taking Behavior of European Banks
In: CEPR Discussion Paper No. DP17355
74 Ergebnisse
Sortierung:
In: CEPR Discussion Paper No. DP17355
SSRN
SSRN
In: Cahiers d'histoire. Revue d'histoire critique, Heft 150, S. 13-22
ISSN: 2102-5916
In: CEPR Discussion Paper No. DP15738
SSRN
Working paper
In: CEPR Discussion Paper No. DP16393
SSRN
In: American economic review, Band 110, Heft 10, S. 3267-3297
ISSN: 1944-7981
Increasingly, algorithms are supplanting human decision-makers in pricing goods and services. To analyze the possible consequences, we study experimentally the behavior of algorithms powered by Artificial Intelligence (Q-learning) in a workhorse oligopoly model of repeated price competition. We find that the algorithms consistently learn to charge supracompetitive prices, without communicating with one another. The high prices are sustained by collusive strategies with a finite phase of punishment followed by a gradual return to cooperation. This finding is robust to asymmetries in cost or demand, changes in the number of players, and various forms of uncertainty. (JEL D21, D43, D83, L12, L13)
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-flled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the frst time in this paper. In addition, 206 of these sites are for the frst time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible. ; European Union (EU) ; United States Department of Energy (DOE)
BASE
SSRN
In: Oxford review of economic policy, Band 37, Heft 3, S. 459-478
ISSN: 1460-2121
Abstract
Markets are being populated with new generations of pricing algorithms, powered with artificial intelligence (AI), that have the ability to autonomously learn to operate. This ability can be both a source of efficiency and cause of concern for the risk that algorithms autonomously and tacitly learn to collude. In this paper we explore recent developments in the economic literature and discuss implications for policy.
We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = -19.95 ± 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Type II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in H α are also unusually high with the blue edge tracing the fastest moving gas initially at 20 000 km s-1, and then declining approximately linearly to 15 000 km s-1 over ∼100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the jekyll code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H α absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry. ; MF acknowledges the support of a Royal Society – Science Foundation Ireland University Research Fellowship. The JEKYLL simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at Parallelldatorcentrum (PDC). PL acknowledges support from the Swedish Research Council. MS is supported by a generous grant (13261) from Villum Fonden and a project grant (8021-00170B) from the Independent Research Fund Denmark (IRFD). NUTS2 is funded in part by the Instrument Center for Danish Astronomy (IDA). This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO (the Public ESO Spectroscopic Survey for Transient Objects) ESO program 188.D−3003, 191.D−0935, more ESO acknowledgements. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST−1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. The SCUSS is funded by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (No. KJCX2−EW−T06). It is also an international cooperative project between National Astronomical Observatories, Chinese Academy of Sciences, and Steward Observatory, University of Arizona, USA. Technical support and observational assistance from the Bok telescope are provided by Steward Observatory. The project is managed by the National Astronomical Observatory of China and Shanghai Astronomical Observatory. Data resources are supported by Chinese Astronomical Data Center (CAsDC). SD and PC acknowledge Project 11573003 supported by NSFC. This research uses data obtained through the Telescope Access Program (TAP), which has been funded by the National Astronomical Observatories of China, the Chinese Academy of Sciences, and the Special Fund for Astronomy from the Ministry of Finance. SJS acknowledges STFC grant ST/P000312/1. This work has made use of data from the Asteroid Terrestial-impact Last Alert System (ATLAS) Project. ATLAS is primarily funded to search for near earth asteroids through NASA grants NN12AR55G, 80NSSC18K0284, and 80NSSC18K1575; byproducts of the NEO search include images and catalogues from the survey area. The ATLAS science products have been made possible through the contributions of the University of Hawaii Institute for Astronomy, the Queen's Univeristy Belfast, the Space Telescope Science Institute, and the South African Astronomical Observatory. OR acknowledges support by projects IC120009 'Millennium Institute of Astrophysics (MAS)' of the Iniciativa Científica Milenio del Ministerio de Economía, Fomento y Turismo de Chile and CONICYT PAI/INDUSTRIA 79090016. JH acknowledges financial support from the Finnish Cultural Foundation. Some data were taken with the Las Cumbres Observatory Network. GH and DAH are supported by NSF grant AST-1313484. GH thanks the LSSTC Data Science Fellowship Program, which is funded by LSSTC, NSF Cybertraining Grant #1829740, the Brinson Foundation, and the Moore Foundation; his participation in the program has benefited this work. LG was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 839090. This work also makes use of observations collected at the European Southern Observatory under ESO programme 0103.D-0338(A). CPG acknowledges support from EU/FP7-ERC grant no. [615929].
BASE
We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = -19.95 +/- 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Type II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in( )H alpha are also unusually high with the blue edge tracing the fastest moving gas initially at 20 000 km s(-1), and then declining approximately linearly to 15000 km s(-1) over similar to 100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the JEKYLL code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H alpha absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry. ; Jenny and AnttiWihuri Foundation Vilho, Yrjo and Kalle Vaisala Fund of the Finnish academy of Science and Letters UCD seed funding scheme SF1518 Science Foundation Ireland Swedish Research Council Villum Fonden 13261 Independent Research Fund Denmark (IRFD) 802100170B Instrument Center for Danish Astronomy (IDA) European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO (the Public ESO Spectroscopic Survey for Transient Objects) ESO program 188.D-3003 191.D-0935 National Aeronautics & Space Administration (NASA) NNX08AR22G National Science Foundation (NSF) AST-1238877 Chinese Academy of Sciences KJCX2-EW-T06 Chinese Astronomical Data Center (CAsDC) National Natural Science Foundation of China 11573003 National Astronomical Observatories of China Chinese Academy of Sciences Special Fund for Astronomy from the Ministry of Finance Science & Technology Facilities Council (STFC) ST/P000312/1 National Aeronautics & Space Administration (NASA) NN12AR55G 80NSSC18K0284 80NSSC18K1575 Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo de Chile IC120009 CONICYT PAI/INDUSTRIA 79090016 Finnish Cultural Foundation National Science Foundation (NSF) AST-1313484 LSSTC Data Science Fellowship Program - LSSTC NSF Cybertraining Grant 1829740 Brinson Foundation Gordon and Betty Moore Foundation European Union (EU) 839090 European Southern Observatory under ESO programme 0103.D0338(A) EU/FP7-ERC grant 615929
BASE
In: Dhami , S , Nurmatov , U , Roberts , G , Pfaar , O , Muraro , A , Ansotegui , I J , Calderon , M , Cingi , C , Demoly , P , Durham , S , van Wijk , R G , Halken , S , Hamelmann , E , Hellings , P , Jacobsen , L , Knol , E , Linnemann , D L , Lin , S , Maggina , V , Oude-Elberink , H , Pajno , G , Panwankar , R , Pastorello , E , Pitsios , C , Rotiroti , G , Timmermans , F , Tsilochristou , O , Varga , E-M , Wilkinson , J , Williams , A , Worm , M , Zhang , L & Sheikh , A 2017 , ' Erratum to : Allergen immunotherapy for allergic rhinoconjunctivitis: Protocol for a systematic review (Clinical and Translational Allergy (2016) 6 (12) DOI:10.1186/s13601-016-0099-6) ' , Clinical and Translational Allergy , vol. 7 , 29 . https://doi.org/10.1186/s13601-017-0168-5
Unfortunately this article [1] was published with an error in the Funding section. The BM4SIT project is not acknowledged. This section should be corrected to the below: Funding EAACI and the BM4SIT project (Grant Number 601763) in the European Union's Seventh Framework Programme FP7.
BASE
Funding Information: Acknowledgements. We thank the anonymous referee for useful comments. We thank Marco Fiaschi for carrying out some of the Asiago observations. EK is supported by the Turku Collegium of Science, Medicine and Technology. EK also acknowledge support from the Science and Technology Facilities Council (STFC; ST/P000312/1). ECK acknowledges support from the G.R.E.A.T. research environment and support from The Wenner-Gren Foundations. MF is supported by a Royal Society – Science Foundation Ireland University Research Fellowship. EC, LT, AP, and MT are partially supported by the PRIN-INAF 2017 with the project "Towards the SKA and CTA era: discovery, localization, and physics of transient objects". HK was funded by the Academy of Finland projects 324504 and 328898. TWC acknowledges the EU Funding under Marie Skłodowska-Curie grant agreement No. 842471. LG was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 839090.This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). MG is supported by the Polish NCN MAESTRO grant 2014/14/A/ST9/00121. KM acknowledges support from EU H2020 ERC grant no. 758638. TMB was funded by the CONICYT PFCHA / DOCTORADOBECAS CHILE/2017-72180113. MN is supported by a Royal Astronomical Society Research Fellowship. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 67.D-0438, 60.A-9475, 199.D-0143, and 1103.D-0328. Some of the observations reported in this paper were obtained with the Southern African Large Telescope (SALT) under programme 2018-1-DDT-003 (PI: Kankare). Polish participation in SALT is funded by grant No. MNiSW DIR/WK/2016/07. Based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, ofthe Instituto de Astrofisica de Canarias. The data presented here were obtained in part with ALFOSC, which is provided by the Instituto de Astrofisica de Andalucia (IAA) under a joint agreement with the University of Copenhagen and NOTSA. This work is partly based on the NUTS2 programme carried out at the NOT. NUTS2 is funded in part by the Instrument Center for Danish Astrophysics (IDA). The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. This paper is also based on observations collected at the Copernico 1.82 m and Schmidt 67/92 Telescopes operated by INAF – Osservatorio Astronomico di Padova at Asiago, Italy. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil). Observations were carried out under programme GS-2017A-C-1. This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaboration. Funding for the DES Projects has been provided by the DOE and NSF (USA), MISE (Spain), STFC (UK), HEFCE (UK), NCSA (UIUC), KICP (U. Chicago), CCAPP (Ohio State), MIFPA (Texas A&M University), CNPQ, FAPERJ, FINEP (Brazil), MINECO (Spain), DFG (Germany) and the collaborating institutions in the Dark Energy Survey, which are Argonne Lab, UC Santa Cruz, University of Cambridge, CIEMAT-Madrid, University of Chicago, University College London, DES-Brazil Consortium, University of Edinburgh, ETH Zürich, Fermilab, University of Illinois, ICE (IEEC-CSIC), IFAE Barcelona, Lawrence Berkeley Lab, LMU München and the associated Excellence Cluster Universe, University of Michigan, NOAO, University of Nottingham, Ohio State University, OzDES Membership Consortium, University of Pennsylvania, University of Portsmouth, SLAC National Lab, Stanford University, University of Sussex, and Texas A&M University. Based on observations obtained with the Samuel Oschin 48-inch Telescope at the Palomar Observatory as part of the Zwicky Transient Facility project. ZTF is supported by the National Science Foundation under Grant No. AST-1440341 and a collaboration including Caltech, IPAC, the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University of Maryland, the University of Washington, Deutsches Elektronen-Synchrotron and Humboldt University, Los Alamos National Laboratories, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee, and Lawrence Berkeley National Laboratories. Operations are conducted by COO, IPAC, and UW. Based on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory (NOAO Prop. ID 2017A-0260; and PI: Soares-Santos), which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. This work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made use of NED which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We have made use of the Weizmann Interactive Supernova Data Repository (Yaron & Gal-Yam 2012, https://wiserep.weizmann.ac.il). Funding Information: 1 iraf is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. Publisher Copyright: © ESO 2021. ; The fraction of core-collapse supernovae (CCSNe) occurring in the central regions of galaxies is not well constrained at present. This is partly because large-scale transient surveys operate at optical wavelengths, making it challenging to detect transient sources that occur in regions susceptible to high extinction factors. Here we present the discovery and follow-up observations of two CCSNe that occurred in the luminous infrared galaxy (LIRG) NGC 3256. The first, SN 2018ec, was discovered using the ESO HAWK-I/GRAAL adaptive optics seeing enhancer, and was classified as a Type Ic with a host galaxy extinction of AV = 2.1-0.1+0.3 mag. The second, AT 2018cux, was discovered during the course of follow-up observations of SN 2018ec, and is consistent with a subluminous Type IIP classification with an AV = 2.1 ± 0.4 mag of host extinction. A third CCSN, PSN J10275082-4354034 in NGC 3256, was previously reported in 2014, and we recovered the source in late-time archival Hubble Space Telescope imaging. Based on template light curve fitting, we favour a Type IIn classification for it with modest host galaxy extinction of AV = 0.3-0.3+0.4 mag. We also extend our study with follow-up data of the recent Type IIb SN 2019lqo and Type Ib SN 2020fkb that occurred in the LIRG system Arp 299 with host extinctions of AV = 2.1-0.3+0.1 and AV = 0.4-0.2+0.1 mag, respectively. Motivated by the above, we inspected, for the first time, a sample of 29 CCSNe located within a projected distance of 2.5 kpc from the host galaxy nuclei in a sample of 16 LIRGs. We find, if star formation within these galaxies is modelled assuming a global starburst episode and normal IMF, that there is evidence of a correlation between the starburst age and the CCSN subtype. We infer that the two subgroups of 14 H-poor (Type IIb/Ib/Ic/Ibn) and 15 H-rich (Type II/IIn) CCSNe have different underlying progenitor age distributions, with the H-poor progenitors being younger at 3σ significance. However, we note that the currently available sample sizes of CCSNe and host LIRGs are small, and the statistical comparisons between subgroups do not take into account possible systematic or model errors related to the estimated starburst ages. ; Peer reviewed
BASE
International audience ; Allergic diseases often occur early in life and persist throughout life. This life-course perspective should be considered in allergen immunotherapy. In particular it is essential to understand whether this al treatment may be used in old age adults. The current paper was developed by a working group of AIRWAYS integrated care pathways for airways diseases, the model of chronic respiratory diseases of the European Innovation Partnership on active and healthy ageing (DG CONNECT and DG Santé). It considered (1) the political background, (2) the rationale for allergen immunotherapy across the life cycle, (3) the unmet needs for the treatment, in particular in preschool children and old age adults, (4) the strategic framework and the practical approach to synergize current initiatives in allergen immunotherapy, its mechanisms and the concept of active and healthy ageing.
BASE
International audience ; Allergic diseases often occur early in life and persist throughout life. This life-course perspective should be considered in allergen immunotherapy. In particular it is essential to understand whether this al treatment may be used in old age adults. The current paper was developed by a working group of AIRWAYS integrated care pathways for airways diseases, the model of chronic respiratory diseases of the European Innovation Partnership on active and healthy ageing (DG CONNECT and DG Santé). It considered (1) the political background, (2) the rationale for allergen immunotherapy across the life cycle, (3) the unmet needs for the treatment, in particular in preschool children and old age adults, (4) the strategic framework and the practical approach to synergize current initiatives in allergen immunotherapy, its mechanisms and the concept of active and healthy ageing.
BASE