Chronic biological stress may adversely affect adolescents' physical and mental health, but insight in the personal and environmental factors that determine chronic stress is limited. We measured 3-month cumulative hair cortisol concentration (HCC) in 419 adolescents, participating in the Flemish Environment and Health Study. Adolescents' health and lifestyle characteristics, household and neighborhood socio-economic status as well as neighborhood urbanicity were assessed as potential determinants of HCC, using multiple linear regression models. We additionally explored heterogeneity of our results by sex. HCC were significantly higher in boys from densely populated neighborhoods, the association was not significant in girls. Accordingly, boys living outside cities had significantly lower HCC than boys, living in cities. HCC was significantly lower in adolescents with an optimal vitality, a measure of a positive mental health status. In adolescent girls, menarcheal status (pre-/postmenarche) was a significant determinant of HCC. Our findings are the first to suggest that residential urbanicity may have an impact on chronic biological stress in a general population of adolescent boys. ; This paper is based on research conducted within the framework of the Flemish Center of Expertise on Environment and Health (FLEHS 2016-2020), funded by the Government of Flanders, Department of Environment & Spatial Development. VV was supported by a PhD fellowship at the University of Antwerp and VITO, funded by the Flemish Center of Expertise on Environment and Health. We thank the adolescents and their families who participated in FLEHS IV. Without their effort, this study would not have been possible. We thank the field workers from the Provincial Institute of Hygiene and VITO for the sample and data collection.
In: Ronsmans , S , Sørig Hougaard , K , Nawrot , T S , Plusquin , M , Huaux , F , Jesús Cruz , M , Moldovan , H , Verpaele , S , Jayapala , M , Tunney , M , Humblet-Baron , S , Dirven , H , Cecilie Nygaard , U , Lindeman , B , Duale , N , Liston , A , Meulengracht Flachs , E , Kastaniegaard , K , Ketzel , M , Goetz , J , Vanoirbeek , J , Ghosh , M , Hoet , P H M & EXIMIOUS Consortium 2022 , ' The EXIMIOUS project-Mapping exposure-induced immune effects : Connecting the exposome and the immunome ' , Environmental Epidemiology , vol. 6 , no. 1 , e193 . https://doi.org/10.1097/EE9.0000000000000193
Immune-mediated, noncommunicable diseases-such as autoimmune and inflammatory diseases-are chronic disorders, in which the interaction between environmental exposures and the immune system plays an important role. The prevalence and societal costs of these diseases are rising in the European Union. The EXIMIOUS consortium-gathering experts in immunology, toxicology, occupational health, clinical medicine, exposure science, epidemiology, bioinformatics, and sensor development-will study eleven European study populations, covering the entire lifespan, including prenatal life. Innovative ways of characterizing and quantifying the exposome will be combined with high-dimensional immunophenotyping and-profiling platforms to map the immune effects (immunome) induced by the exposome. We will use two main approaches that "meet in the middle"-one starting from the exposome, the other starting from health effects. Novel bioinformatics tools, based on systems immunology and machine learning, will be used to integrate and analyze these large datasets to identify immune fingerprints that reflect a person's lifetime exposome or that are early predictors of disease. This will allow researchers, policymakers, and clinicians to grasp the impact of the exposome on the immune system at the level of individuals and populations.
In: Ronsmans , S , Sørig Hougaard , K , Nawrot , T S , Plusquin , M , Huaux , F , Jesús Cruz , M , Moldovan , H , Verpaele , S , Jayapala , M , Tunney , M , Humblet-Baron , S , Dirven , H , Cecilie Nygaard , U , Lindeman , B , Duale , N , Liston , A , Meulengracht Flachs , E , Kastaniegaard , K , Ketzel , M , Goetz , J , Vanoirbeek , J , Ghosh , M & Hoet , P H M 2022 , ' The EXIMIOUS project-Mapping exposure-induced immune effects: connecting the exposome and the immunome ' , Environmental epidemiology (Philadelphia, Pa.) , vol. 6 , no. 1 , e193 . https://doi.org/10.1097/ee9.0000000000000193
Immune-mediated, noncommunicable diseases-such as autoimmune and inflammatory diseases-are chronic disorders, in which the interaction between environmental exposures and the immune system plays an important role. The prevalence and societal costs of these diseases are rising in the European Union. The EXIMIOUS consortium-gathering experts in immunology, toxicology, occupational health, clinical medicine, exposure science, epidemiology, bioinformatics, and sensor development-will study eleven European study populations, covering the entire lifespan, including prenatal life. Innovative ways of characterizing and quantifying the exposome will be combined with high-dimensional immunophenotyping and -profiling platforms to map the immune effects (immunome) induced by the exposome. We will use two main approaches that "meet in the middle"-one starting from the exposome, the other starting from health effects. Novel bioinformatics tools, based on systems immunology and machine learning, will be used to integrate and analyze these large datasets to identify immune fingerprints that reflect a person's lifetime exposome or that are early predictors of disease. This will allow researchers, policymakers, and clinicians to grasp the impact of the exposome on the immune system at the level of individuals and populations.
Telomere length is considered a biomarker of biological aging. Shorter telomeres and obesity have both been associated with age-related diseases. To evaluate the association between various indices of obesity with leukocyte telomere length (LTL) in childhood, data from 1,396 mother-child pairs of the multi-centre European birth cohort study HELIX were used. Maternal pre-pregnancy body mass index (BMI) and 4 adiposity markers in children at age 8 (6-11) years were assessed: BMI, fat mass, waist circumference, and skinfold thickness. Relative LTL was obtained. Associations of LTL with each adiposity marker were calculated using linear mixed models with a random cohort effect. For each 1 kg/m² increment in maternal pre-pregnancy BMI, the child's LTL was 0.23% shorter (95%CI: 0.01,0.46%). Each unit increase in child BMI z-score was associated with 1.21% (95%CI: 0.30,2.11%) shorter LTL. Inverse associations were observed between waist circumference and LTL (-0.96% per z-score unit; 95%CI: -2.06,0.16%), and skinfold thickness and LTL (-0.10% per z-score unit; 95%CI: -0.23,0.02%). In conclusion, this large multicentric study suggests that higher child adiposity indicators are associated with short telomeres in children, and that associations are stronger for child BMI than for maternal pre-pregnancy BMI. ; This work was supported by the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no 308333 – the HELIX project. INMA data collection was supported by grant C/ from the Instituto de Salud Carlos III. This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No 774548. Tim S. Nawrot was funded by the EU Program "Ideas" (ERC-2012-StG 310898). ISGlobal is a member of the CERCA Programme, Generalitat de Catalunya. We are grateful to all the participating families in the six countries who took part in this study.
Background: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. Objectives: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter <10 (PM10) or <2.5 mu m (PM2.5) and DNA methylation in newborns and children. Methods: We meta-analyzed associations between exposure to PM10 (n=1,949) and PM2.5 (n=1,551) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. Results: Six CpGs were significantly associated [false discovery rate (FDR) <0.05] with prenatal PM10 and 14 with PM2.5 exposure. Two of the PM10-related CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant (p<0.05) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent PM10 exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal PM10 and or PM2.5 exposure, of which two PM10-related DMRs, including H19 and MARCH11, replicated in newborns. Conclusions: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. ; ALSPAC: The UK Medical Research Council and the Wellcome Trust (Grant ref. 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors and P.Y. will serve as guarantors for the contents of this paper. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristoLac.uk/alspac/external/documents/grant-acknowledgements.pdf). This research was specifically funded by a joint grant from the UK Economic & Social and Biotechnology & Biological Sciences Research Councils (Grant ref. ES/N000498/1). ALSPAC was funded by the BBSRC (BBI025751/1 and BB/I025263/1). Air pollution exposure assessment was funded by Public Health England as part of the MRC-PHE Centre for Environment and Health, funded also by the UK Medical Research Council (Grant ref. MR/L01341X/1). This paper does not necessarily reflect the views of Public Health England or the Department of Health. BAMSE was supported by The Swedish Research Council, The Swedish Heart-Lung Foundation, Freemason Child House Foundation in Stockholm, MeDALL (Mechanisms of the Development of ALLergy) a collaborative project conducted within the European Union (grant agreement No. 261357), Centre for Allergy Research, Stockholm County Council (ALE), Swedish Foundation for Strategic Research (SSF) (RBc08-0027), the Strategic Research Programme (SFO) in Epidemiology at Karolinska Institutet, The Swedish Research Council Foams, and the Swedish Environment Protection Agency. E.M. is supported by a grant from the European Research Council under the European Union (EU) Horizon 2020 (H2020) research and innovation programme (grant agreement number 757919, TRIBAL). O.G. is supported by Forte (Swedish Research Council for Health, Working Life and Welfare) and The Swedish Society for Medical Research. CHS: This work was supported by NIEHS grants K01ES017801, R01ES022216, and P30ES007048. EARLI: This work was supported by NIH grants R01ES016443, R01ES023780, and R01ES017646 as well as by Autism Speaks (AS 5938). ENVIRONAGE: The ENVIRONAGE birth cohort is funded by the European Research Counsil (ERC-2012-StG.310898) and by funds of the Flemisch Scientific Research Council (FWO, N1516112/G.0.873.11N.10). The methylation assays were funded by the European Community's Seventh Framework Programme FP7/2007-2013 project EXPOsOMICS (grant no. 308610). Z.H. is supported by the Exposomics EC FP7 grant (Grant agreement no. 308610). ZH and A.G. and the Epigenetics Group at IARC are supported by grants from the Institut National du Cancer (INCa, Plan Cancer-EVA-Inserm, France) and Association pour la Recherche sur le Cancer (ARC, France). Generation R Study: The general design of the Generation R Study is made possible by financial support from the Erasmus Medical Center (MC), Rotterdam, the Erasmus University Rotterdam, Netherlands Organization for Health Research and Development and the Ministry of Health, Welfare and Sport. The EWAS data was funded by a grant to VWJ from Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA; project no. 050-060-810), by funds from the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC. V.W.J. also received a grant from Netherlands Organization for Health Research and Development (VIDI 016.136.361) and a Consolidator Grant from the European Research Council (ERC-2014-CoG-648916). J.F.F. has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 633595 (DynaHEALTH). This project received funding from the European Union's Horizon 2020 Research and Innovation Programme (733206, LIFECYCLE). HELIX: The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-206) under grant agreement no 308333 - the HELIX project. R.G. received the grant of the Lithuanian Agency for Science Innovation and Technology (No. 45 31V-66). The Norwegian Mother and Child Cohort Study (MoBa) is supported by the Ministry of Health and Care Services and the Ministry of Education and Research, NIH/NIEHS (contract no. N01-ES-75558), NIH/NINDS (grant no. 1 UO1 NS 047537-01 and grant no. 2 UO1 NS 047537-06A1). INMA: This study was funded by grants from Institut() de Salud Carlos III (Red INMA G03/176), Generalitat de Catalunya-CIRIT 1999SGR 00241, and EU Commission (261357; 211250; 268479). Piccolipiu: The study was approved and initially funded by the Italian National Centre for Disease Prevention and Control (CCM grant 2010) and by the Italian Ministry of Health (art 12 and 12bis Dl.gs.vo 502/92). The methylation assays were funded by the European Community's Seventh Framework Programme FP7/2007-2013 project EXPOsOMICS (grant no. 308610). Z.H. is supported by the Exposomics EC FP7 grant (Grant agreement no: 308610). Z.H. and A.G. and the Epigenetics Group at IARC are supported by grants from the Institut National du Cancer (INCa, Plan Cancer-EVA-INSERM, France) and Association pour la Recherche sur le Cancer (ARC, France). Rhea: The methylation assays were funded by the European Community's Seventh Framework Programme FP7/2007-2013 project EXPOsOMICS (grant no. 308610). Z.H. is supported by the Exposomics EC FP7 grant (grant agreement no. 308610). ZH and A.G. and the Epigenetics Group at IARC are supported by grants from the Institut National du Cancer (INCa, Plan Cancer-EVA INSERM, France) and Association pour la Recherche sur le Cancer (ARC, France). PRISM: R.J.W. received funding for the PRISM cohort under HL095606 and R01 HL1143396. A.C.J. is supported by R00 ES023450. Project Viva: This Project Viva study was supported by grants from the NIH (NIH R01 HL 111108, R01 NR013945, R01 HD 034568, K24 HD069408, K23 ES022242, P01ES009825, R01AI102960, P30 ES000002) and the U.S. Environmental Protection Agency (EPA) (R832416, RD834798). This publication's contents are solely the responsibility of the grantee and do not necessarily represent the official views of the U.S. Government, the U.S. Department of Health and Human Services or the NIH, or the EPA. Further, the EPA does not endorse the purchase of any commercial products or services mentioned in the publication. MeDALL: The methylation study of MeDALL cohorts was funded by MEDALL, a collaborative project supported by the European Union under the Health Cooperation Work Programme of the 7th Framework Programme (grant agreement no. 261357). The Biobank-Based Integrative Omics Studies (BIOS) Consortium is funded by BBMRI-NL, a research 'infrastructure financed by the Dutch government (NWO 184.021.007). BAMSE: We would like to thank all the families for their participation in the BAMSE study. In addition, we would like to thank E. Haliner, S. Nilsson, and A. Lauber at the BAMSE secretary for invaluable support, as well as Mutation Analysis Facility (MAF) at Karolinska Institutet for genome-wide methylation analysis, and I. Delin for excellent technical assistance. The computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project b201.4110.