Protein components of C. militaris have been reported to possess various biological activities. In our previous research, a Cordyceps militaris-derived immunoregulatory protein (CMIP) was naturally isolated and showed the activity of inhibiting the metastasis of breast cancer cells. This study aimed to obtain recombinant CMIP (rCMIP) using recombinant expression and elucidate its ability to activate macrophages. Recombinant CMIP showed one band at approximately 15 kDa or 30 kDa, or two bands at 15 kDa and 30 kDa, under different denaturation conditions of electrophoresis. The cell binding assay showed that rCMIP selectively binds to the surface of macrophages. After adhesion, it did not induce the apoptosis of RAW 264.7 cells, but promoted their proliferation. Moreover, rCMIP significantly induced the expression of M1 macrophage polarization-related molecules. The mean fluorescence intensity (MFI) of CD 86 was enhanced by 2.1-fold and 3.2-fold under 0.64 μM and 1.6 μM of rCMIP treatment, respectively. Cytokines typically expressed in M1 macrophages, such as TNF-α, iNOS, IL-6, CCL 4, CCL 5 and CXCL 10, were also considerably induced by rCMIP, while the expression of cytokines in typical M2 macrophages, like Arg-1, CCL17 and CCL22, were not changed or slightly decreased. Under rCMIP treatment, the release of NO was also appreciably induced. In the present study, we reported cloning, expression and functional characterization of rCMIP, which was naturally isolated from the fruiting body of C. militaris in our previous study. The data imply that rCMIP possesses immunomodulatory activity in macrophages.
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 242, S. 113943
AbstractAuditory processing capabilities at the subcortical level have been hypothesized to impact an individual's development of both language and reading abilities. The present study examined whether auditory processing capabilities relate to language development in healthy 9‐month‐old infants. Participants were 71 infants (31 boys and 40 girls) with both Auditory Brainstem Response (ABR) and language assessments. At 6 weeks and/or 9 months of age, the infants underwent ABR testing using both a standard hearing screening protocol with 30 dB clicks and a second protocol using click pairs separated by 8, 16, and 64‐ms intervals presented at 80 dB. We evaluated the effects of interval duration on ABR latency and amplitude elicited by the second click. At 9 months, language development was assessed via parent report on the Chinese Communicative Development Inventory ‐ Putonghua version (CCDI‐P). Wave V latency z‐scores of the 64‐ms condition at 6 weeks showed strong direct relationships with Wave V latency in the same condition at 9 months. More importantly, shorter Wave V latencies at 9 months showed strong relationships with the CCDI‐P composite consisting of phrases understood, gestures, and words produced. Likewise, infants who had greater decreases in Wave V latencies from 6 weeks to 9 months had higher CCDI‐P composite scores. Females had higher language development scores and shorter Wave V latencies at both ages than males. Interestingly, when the ABR Wave V latencies at both ages were taken into account, the direct effects of gender on language disappeared. In conclusion, these results support the importance of low‐level auditory processing capabilities for early language acquisition in a population of typically developing young infants. Moreover, the auditory brainstem response in this paradigm shows promise as an electrophysiological marker to predict individual differences in language development in young children.
Sudan is facing a formidable task of fighting COVID-19. The country is suddenly challenged by this health issue that will test its path towards peace, stability, and development. The fragile task of handling COVID-19 epidemic in Sudan is brought about by several factors such as the weak healthcare system and political conflicts, that have been intertwined with the recent regime. Even before the COVID-19 pandemic, there was already high unemployment, soaring inflation and lack of social protection and safety nets for its populace. The government has been trying its best to address the pandemic, however, much still needs to be done. Neglecting Sudan by the international community in terms of support towards containment of COVID- 19 has grievous implications for transition out of military dictatorship and efforts to curb the pandemic globally. As no country is safe if all is not safe. It is essential that Sudan should leverage on innovations, country-compatible measures, and other tailor-made strategies for effective responses.
BACKGROUND: The rising prevalence of obesity in military personnel has raised great concerns. Previous studies suggest that body mass index (BMI)- and waist-to-hip ratio (WHR)-based obesity classifications in US military personnel and firefighters have high false negative and subsequently cause obesity misclassification. OBJECTIVE: To determine whether BMI and WHR could reflect the fat mass of Chinese military personnel. METHODS: Three hundred fifty-three male Chinese military personnel and 380 age-matched male adults were recruited. Obesity classification was defined by BMI, WHR, and body fat percentage (BFP). RESULTS: Chinese military personnel had extremely low obesity rate determined by either BFP (0.3%) or BMI (0.6%). By combining overweight and obese individuals, BMI- and WHR-determined prevalence of overweight/obesity was 22.4% and 17.0% compared to BFP-based standard (4.0%) (P < 0.05). In reference to BFP, BMI and WHR have high false-positive rate compared to the control group. Further analysis showed that Chinese military personnel consisted of high percentage of BFP(low)BMI(high) and/or BFP(low)WHR(high) subpopulations. Eighty-one percent of BMI(high) and 78.3% of WHR(high) of them were BFP low. CONCLUSIONS: Chinese military personnel has extremely low obesity rate. BMI and WHR have high false-positive rates in reference to BFP, which cannot accurately reflect the mass of adipose tissue and leads to obesity misclassification.