OBJECTIVES--To study trends in human listeriosis and determine possible sources of infection. DESIGN--Descriptive analysis of laboratory reports of human listeriosis together with a survey of subtypes of Listeria monocytogenes isolated from patients and foodstuffs and an interview survey of patients to obtain food histories. SETTING--United Kingdom and Republic of Ireland 1985 to 1990. RESULTS--There was a near doubling in the incidence of human listeriosis in England, Wales, and Northern Ireland between 1985 and mid-1989 followed by a sharp decline. The upsurge in cases was caused largely by two strains of L monocytogenes, which accounted for 30-54% of the annual totals. These strains were less common before 1987 and after July 1989. A survey of paté in England and Wales in July 1989 showed that it frequently contained L monocytogenes. A similar survey in July 1990 showed a reduction in the proportions of samples contaminated. In 1989 patés from a single plant (manufacturer Y) were more likely to be contaminated by L monocytogenes and at higher levels than those from other producers. Most strains of L monocytogenes recovered from manufacturer Y's paté in 1989 were indistinguishable from those responsible for the 1987-9 upsurge in human listeriosis and were uncommon among isolates from patés from other manufacturers and from a wide range of other foodstuffs. Patients infected with the types of L monocytogenes found in paté were significantly more likely to have recently eaten paté than those affected by other strains. The start of the decline in numbers of cases of listeriosis coincided with government health warnings on paté consumption and the suspension of supplies from manufacturer Y. CONCLUSIONS--Contamination of paté was a likely contributory cause of the increase in the incidence of listeriosis between 1987 and 1989.
The UK has incorporated a net-zero emissions target into national legislation. A range of Greenhouse Gas Removal (GGR) options will likely play a key role in the government's strategy toward meeting this goal. Governance frameworks will need to be developed to support GGR development and manage the potential impacts, particularly those on the diverse local communities where the various options will be deployed. This research examines the UK's experience with development and regulation of shale gas - using the technologies of hydraulic fracturing combined with horizontal drilling - with a focus on governance and the implications for the development and widespread deployment of GGR. We evaluate the approach used against the principles of good governance, which emphasizes the critical role that local communities and publics play in deployment. The UK's top-down governance of shale gas highlights the risk of regulation driven by assumptions about national and local need, value and a lack of transparency or meaningful stakeholder participation in decision-making. The use of existing legislative frameworks for conventional fossil fuel extraction proved inadequate to address unanticipated consequences such as induced seismicity. Moreover, the support for unconventional hydrocarbons in UK energy policy appeared inconsistent with the goal of meeting greenhouse gas targets and passing significant legislation in 2019 to bring carbon emissions to net-zero. To gain social acceptance at the local level, deployment of new technologies needs to be evaluated from a variety of framings and viewpoints. Where new technologies or practices are deployed, such as fracking and GGR, the knowledge and understanding of the impacts - a fundamental principle of good governance - may be less certain or more contested. Early inclusion and participation of local communities would allow issues of concern to inform how trials are undertaken and regulation designed. This anticipatory and participatory approach fits with the principles of good ...
This report gives examples of financial innovations already available to prosumer business models and establishes how they can be integrated into the diverse financial markets in the European Union. The main goal of this report is to inspire stakeholders – such as financial institutions and community energy intermediaries – either to adopt these models or to adapt them to their respective national and local contexts. For this purpose, we give an overview of 10 cases - local initiatives, supporting organisations and/or financial institutions - and show how they have developed their model within the respective institutional environment. ; H2020 project PROSEU - Prosumers for the Energy Union: Mainstreaming active participation of citizens in the energy transition. Work package 4 (WP4) - Finance and business models
This report gives examples of financial innovations already available to prosumer business models and establishes how they can be integrated into the diverse financial markets in the European Union. The main goal of this report is to inspire stakeholders – such as financial institutions and community energy intermediaries – either to adopt these models or to adapt them to their respective national and local contexts. For this purpose, we give an overview of 10 cases - local initiatives, supporting organisations and/or financial institutions - and show how they have developed their model within the respective institutional environment. ; H2020 project PROSEU - Prosumers for the Energy Union: Mainstreaming active participation of citizens in the energy transition. Work package 4 (WP4) - Finance and business models
This paper brings together socio-technical transitions theory with strategic foresight and human centred design. The aim is to bring in new methods for analysing the business model element of sustainability transitions. We propose a process for doing business model innovation work. Business models have become a key area of focus, particularly in the energy sector. Recent work shows how the development of new business models co-evolves with elements of the energy system, either driving technological innovation, changing user practices or placing pressure on the institutional or policy regime. At the same time, there is no recognised process for business model research aimed at transition management. It is time therefore to propose a more formalised and theoretically grounded approach to business model innovation work. We use this contribution to synthesise the lessons of a four-year research project centred on energy utility business models with industrial, commercial and government stakeholders. We describe the process adopted, and insights this process generated. We seek to establish this process in the literature, invite others to utilise it, adapt it and critique it.
The Coles Hill uranium deposit, with an indicated resource of about 130 Mlb of U3O8, is the largest unmined uranium deposit in the United States. The deposit is hosted in the Taconian (approx. 480-450 Ma) Martinsville igneous complex, which consists of the Ordovician Leatherwood Granite (granodiorite) and the Silurian Rich Acres Formation (diorite). The host rock was metamorphosed to orthogneiss during the Alleghanian orogeny (approx. 325-260 Ma), when it also underwent dextral strike-slip movement along the Brookneal shear zone. During the Triassic, extensional tectonics led to the development of the Dan River Basin that lies east of Coles Hill. The mineralized zone is hosted in brittle structures in the footwall of the Triassic Chatham fault that forms the western edge of the basin. Within brittle fracture zones, uranium silicate and uranium-bearing fluorapatite with traces of brannerite form veins and breccia-fill with chlorite, quartz, titanium oxide, pyrite, and calcite. Uranium silicates also coat and replace primary titanite, zircon, ilmenite, and sulfides. Sodium metasomatism preceded and accompanied uranium mineralization, pervasively altering host rock and forming albite from primary feldspar, depositing limpid albite rims on igneous feldspar, altering titanite to titanium oxide and calcite, and forming riebeckite. Various geothermometers indicate temperatures of less than similar to 200 degrees C during mineralization. In situ U-Pb analyses of titanite, Ti-oxide, and apatite, along with Rb/Sr and U/Pb isotope systematics of whole-rock samples, resolve the timing of geologic processes affecting Coles Hill. The host Leatherwood Granite containing primary euhedral titanite is dated at 450 to 445 Ma, in agreement with previously obtained ages from zircon in the Martinsville igneous complex. A regional metamorphic event at 330 to 310 Ma formed anhedral titanite and some apatite, reequilibrated whole-rock Rb/Sr and U-Pb isotopes, and is interpreted to have coincided with movement along the Brookneal shear zone. During shearing and metamorphism, primary refractory uranium-bearing minerals including titanite, zircon, and uranothorite were recrystallized, and uranium was liberated and mixed locally with hematite, clay, and other fine-grained minerals. Uranium mineralization was accompanied by a metasomatic episode between 250 and 200 Ma that reset the Rb-Sr and U-Pb isotope systems and formed titanium oxide and apatite that are associated and, in places, intimately intergrown with uranium silicate dating mineralization. This event coincides with rifting that formed the Dan River Basin and was a precursor to the breakup of Pangea. The orientation of late-stage tectonic stylolites is compatible with their formation during Late Triassic to Early Jurassic basin inversion, postdating the main stage of uranium mineralization and effectively dating mineralization as Mesozoic. Based on the close spatial and temporal association of uranium with apatite, we propose that uranium was carried as a uranyl-phosphate complex. Uranium was locally reduced by coupled redox reactions with ferrous iron and sulfide minerals in the host rock, forming uranium silicates. The release of calcium during sodium metasomatic alteration of primary calcic feldspar and titanite in the host rock initiated successive reactions in which uranium and phosphate in mineralizing fluids combined with calcium to form U-enriched fluorapatite. Based on the deposit mineralogy, oxygen isotope geochemistry, and trace element characteristics of uranium silicate and gangue minerals, the primary mineralizing fluids likely included connate and/or meteoric water sourced from the adjacent Dan River Basin. High heat flow related to Mesozoic rifting may have driven these (P-Na-F- rich) fluids through local aquifers and into basin margin faults, transporting uranium from the basin or mobilizing uranium from previously formed U minerals in the Brookneal shear zone, or from U-enriched older basement rock. ; Published version ; Public domain authored by a U.S. government employee
This deliverable develops a comprehensive overview of the incentive structures that shape the mainstreaming of RES prosumerism. The Incentive Structures Framework (ISF) presented here identifies and describes 17 key societal conditions, classified along the three clusters of regulatory-financial conditions, technological-material conditions and cultural-discursive conditions. The relevance is empirically substantiated through brief summaries of observations from PROSEU thematic work packages, Living Labs, and survey results. The ISF also clarifies how these societal conditions can give rise to different forms of RES prosumerism and to tensions and crossroads in the mainstreaming process. The ISF is substantiated through three analyses of political-economical, technological-infrastructural, and organisational crossroads in the mainstreaming process. ; H2020 project PROSEU - Prosumers for the Energy Union: Mainstreaming active participation of citizens in the energy transition. Work package 6 (WP6) - Participatory Integrated Assessment of Incentive Structures
30 pags., 11 figs., 5 tabs. ; We quantify the stratospheric injection of brominated very short-lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC-11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry-Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer-lived chemicals as a surrogate for VSLS. ; The CONTRAST field deployment was supported by the U.S. NSF, and the ATTREX field deployment was supported by the National Aeronautics and Space Administration (NASA). P. A. W., R. J. S., T. P. C., J. M. N., and D. C. A. received support from NSF, NASA Atmospheric Composition Modeling and Analysis Program (ACMAP), and the NASA Modeling, Analysis, and Prediction (MAP). D. C. A. also received support from the NASA Upper Atmospheric Research Program. J. M. N. was also supported by the NASA Postdoctoral Program at the NASA Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASA. R. V. acknowledges funding from NSF awards AGS‐1261740 and AGS‐1620530. CONTRAST data are publicly available at "http://data.eol.ucar.edu/master_list/?project= CONTRAST." ATTREX data are publicly available at "https://espoarchive.nasa.gov/archive/browse/attrex/id4/GHawk." The National Center for Environmental Prediction (NCEP) meteorological data are available at "https://doi.org/10.5065/D6M043C6." CCMI outputs from CESM1‐WACCM and CESM1‐CAM4Chem are archived by the National Center for Atmospheric Research (NCAR) at "www.earthsystemgrid.org," and NCAR is sponsored by NSF. CCMI output from the EMAC‐L90MA‐SD simulation is available at "https://doi.org/10.5281/zenodo.1204495." All other CCMI simulations are archived by the British Atmospheric Data Centre at "http://badc.nerc.ac.uk/". Output from CAM‐chem‐SD is available as "NCAR/ACD CAMChem 1 Degree Forecast" at "http://catalog.eol.ucar.edu/contrast/model/CAMChem_NCAR_1deg/." WACCM and CAM‐Chem are components of the Community Earth System Model (CESM), which is also supported by NSF. Computing resources were provided by NCAR's Climate Simulation Laboratory, sponsored by NSF and other agencies. This research was enabled by the computational and storage resources of NCAR's Computational and Information System Laboratory (CISL). R. S. and K. A. S., with ACCESS‐CCM, acknowledge support from Australian Research Council's Centre of Excellence for Climate System Science (CE110001028), the Australian Government's National Computational Merit Allocation Scheme (q90), and Australian Antarctic science grant program (FoRCES 4012). CCSRNIES research was supported by the Environment Research and Technology Development Fund (2‐1303 and 2‐1709) of the Ministry of the Environment, Japan, and computations were performed on NEC‐SX9/A(ECO) computers at the CGER, NIES. The EMAC simulations have been performed at the German Climate Computing Centre (DKRZ) through support from the Bundesministerium für Bildung und Forschung (BMBF). DKRZ and its scientific steering committee are gratefully acknowledged for providing the HPC and data archiving resources for the consortial project ESCiMo (Earth System Chemistry integrated Modelling). The TOMCAT modeling was supported by NERC NCAS and the SISLAC project (NE/R001782/1), and the simulations were performed on the Archer and Leeds HPC Systems.
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FINEP (Brazil) ; NSFC (China) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; SFI (Ireland) ; INFN (Italy) ; NASU (Ukraine) ; STFC (UK) ; NSF (USA) ; BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CAS (China) ; MoST (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; GSRT (Greece) ; OTKA (Hungary) ; NIH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; NRF (Republic of Korea) ; WCU (Republic of Korea) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TUBITAK (Turkey) ; TAEK (Turkey) ; SFFR (Ukraine) ; DOE (USA) ; MPG (Germany) ; FOM (The Netherlands) ; NWO (The Netherlands) ; MNiSW (Poland) ; NCN (Poland) ; MEN/IFA (Romania) ; MinES (Russia) ; FANO (Russia) ; MinECo (Spain) ; SNSF (Switzerland) ; SER (Switzerland) ; Marie-Curie programme ; European Research Council ; EPLANET (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIABelgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; Foundation for Polish Science ; European Union, Regional Development Fund ; Compagnia di San Paolo (Torino) ; Consorzio per la Fisica (Trieste) ; MIUR (Italy) ; Thalis programme ; Aristeia programme ; EU-ESF ; Greek NSRF ; National Priorities Research Program by Qatar National Research Fund ; EPLANET ; Marie Sklodowska-Curie Actions ; ERC (European Union) ; Conseil general de Haute-Savoie ; Labex ENIGMASS ; OCEVU ; Region Auvergne (France) ; XuntaGal (Spain) ; GENCAT (Spain) ; Royal Society (UK) ; Royal Commission for the Exhibition of 1851 (UK) ; MIUR (Italy): 20108T4XTM ; The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.