Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of "big data" for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health and healthcare for all Europeans.
In: Auffray , C , Balling , R , Barroso , I , Bencze , L , Benson , M , Bergeron , J , Bernal-Delgado , E , Blomberg , N , Bock , C , Conesa , A , Del Signore , S , Delogne , C , Devilee , P , Di Meglio , A , Eijkemans , M , Flicek , P , Graf , N , Grimm , V , Guchelaar , H-J , Guo , Y-K , Gut , I G , Hanbury , A , Hanif , S , Hilgers , R-D , Honrado , Á , Hose , D R , Houwing-Duistermaat , J , Hubbard , T , Janacek , S H , Karanikas , H , Kievits , T , Kohler , M , Kremer , A , Lanfear , J , Lengauer , T , Maes , E , Meert , T , Müller , W , Nickel , D , Oledzki , P , Pedersen , B , Petkovic , M , Pliakos , K , Rattray , M , I Màs , J R , Schneider , R , Sengstag , T , Serra-Picamal , X , Spek , W , Vaas , L A I , van Batenburg , O , Vandelaer , M , Varnai , P , Villoslada , P , Vizcaíno , J A , Wubbe , J P M & Zanetti , G 2016 , ' Making sense of big data in health research : Towards an EU action plan ' Genome Medicine , vol 8 , no. 1 , pp. 71 . DOI:10.1186/s13073-016-0323-y
Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of "big data" for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health and healthcare for all Europeans.
In: Auffray , C , Balling , R , Barroso , I , Bencze , L , Benson , M , Bergeron , J , Bernal-Delgado , E , Blomberg , N , Bock , C , Conesa , A , Del Signore , S , Delogne , C , Devilee , P , Di Meglio , A , Eijkemans , M , Flicek , P , Graf , N , Grimm , V , Guchelaar , H J , Guo , Y K , Gut , I G , Hanbury , A , Hanif , S , Hilgers , R D , Honrado , Á , Hose , D R , Houwing-Duistermaat , J , Hubbard , T , Janacek , S H , Karanikas , H , Kievits , T , Kohler , M , Kremer , A , Lanfear , J , Lengauer , T , Maes , E , Meert , T , Müller , W , Nickel , D , Oledzki , P , Pedersen , B , Petkovic , M , Pliakos , K , Rattray , M , i Màs , J R , Schneider , R , Sengstag , T , Serra-Picamal , X , Spek , W , Vaas , L A I , van Batenburg , O , Vandelaer , M , Varnai , P , Villoslada , P , Vizcaíno , J A , Wubbe , J P M & Zanetti , G 2016 , ' Erratum to : Making sense of big data in health research: Towards an EU action plan [Genome Med., 8 (2016) (71)] ' , Genome medicine , vol. 8 , no. 1 , 118 . https://doi.org/10.1186/s13073-016-0376-y
The published article [1] has two points of confusion in the section entitled "Technical challenges related to the management of electronic health records". Firstly, the International Rare Diseases Research Consortium (IRDiRC) has developed policies and guidelines on approaches to data sharing meant to enable and improve the development of diagnoses and therapies for rare diseases. However, at present, IRDiRC has not developed best practices for the management of electronic health records (EHRs). Secondly, RARE-Bestpractices is a European Commission 7th Framework Programme (FP7) funded initiative, independent of IRDiRC. RARE-Bestpractices contributes to IRDiRC goals and objectives; however the initiative itself is not sponsored nor connected to IRDiRC.
Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of "big data" for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health arid healthcare for all Europearis. ; Funding Agencies|European Union [115568, 603160, 282510, 664691, 115749, 305033, 305397, 288028, 242189, 211601]; European Molecular Biology Laboratory; Wellcome Trust [WT098051]; [115372]; [257082]; [291814]; [291728]; [321567]; [262055]; [115446]; [602552]; [644753]; [634143]; [261357]; [305280]; [115525]; [2011 23 02]; [270089]; [278433]; [602525]; [201418]; [242135]; [260558]; [223411]; [305626]; [115621]; [611388]; [306000]; [354457]; [305564]; [115010]; [269978]
Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of "big data" for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health and healthcare for all Europeans.
International audience ; Building bridges between environmental and political agendas is essential nowadays in face of the increasing human pressure on natural environments, including wetlands. Wetlands provide critical ecosystem services for humanity and can generate a considerable direct or indirect income to the local communities. To meet many of the sustainable development goals, we need to move our trajectory from the current environmental destructive development to a wiser wetland use. The current article contain a proposed agenda for the Pantanal aiming the improvement of public policy for conservation in the Pantanal, one of the largest, most diverse, and continuous inland wetland in the world. We suggest and discuss a list of 11 essential interfaces between science, policy, and development in region linked to the proposed agenda. We believe that a functional science network can booster the collaborative capability to generate creative ideas and solutions to address the big challenges faced by the Pantanal wetland.
International audience ; Building bridges between environmental and political agendas is essential nowadays in face of the increasing human pressure on natural environments, including wetlands. Wetlands provide critical ecosystem services for humanity and can generate a considerable direct or indirect income to the local communities. To meet many of the sustainable development goals, we need to move our trajectory from the current environmental destructive development to a wiser wetland use. The current article contain a proposed agenda for the Pantanal aiming the improvement of public policy for conservation in the Pantanal, one of the largest, most diverse, and continuous inland wetland in the world. We suggest and discuss a list of 11 essential interfaces between science, policy, and development in region linked to the proposed agenda. We believe that a functional science network can booster the collaborative capability to generate creative ideas and solutions to address the big challenges faced by the Pantanal wetland.
International audience ; Building bridges between environmental and political agendas is essential nowadays in face of the increasing human pressure on natural environments, including wetlands. Wetlands provide critical ecosystem services for humanity and can generate a considerable direct or indirect income to the local communities. To meet many of the sustainable development goals, we need to move our trajectory from the current environmental destructive development to a wiser wetland use. The current article contain a proposed agenda for the Pantanal aiming the improvement of public policy for conservation in the Pantanal, one of the largest, most diverse, and continuous inland wetland in the world. We suggest and discuss a list of 11 essential interfaces between science, policy, and development in region linked to the proposed agenda. We believe that a functional science network can booster the collaborative capability to generate creative ideas and solutions to address the big challenges faced by the Pantanal wetland.
Academic cognition and intelligence are 'socially distributed'; instead of dwelling inside the single mind of an individual academic or a few academics, they are spread throughout the different minds of all academics. In this article, some mechanisms have been developed that systematically bring together these fragmented pieces of cognition and intelligence. These mechanisms jointly form a new authoring method called 'crowd-authoring', enabling an international crowd of academics to co-author a manuscript in an organized way. The article discusses this method, addressing the following question: What are the main mechanisms needed for a large collection of academics to collaborate on the authorship of an article? This question is addressed through a developmental endeavour wherein 101 academics of educational technology from around the world worked together in three rounds by email to compose a short article. Based on this endeavour, four mechanisms have been developed: a) a mechanism for finding a crowd of scholars; b) a mechanism for managing this crowd; c) a mechanism for analyzing the input of this crowd; and d) a scenario for software that helps automate the process of crowd-authoring. The recommendation is that crowd-authoring ought to win the attention of academic communities and funding agencies, because, given the well-connected nature of the contemporary age, the widely and commonly distributed status of academic intelligence and the increasing value of collective and democratic participation, large-scale multi-authored publications are the way forward for academic fields and wider academia in the 21st century. ; peerReviewed
This article theorizes the functional relationship between the human components (i.e., scholars) and non-human components (i.e., structural configurations) of academic domains. It is organized around the following question: in what ways have scholars formed and been formed by the structural configurations of their academic domain? The article uses as a case study the academic domain of education and technology to examine this question. Its authorship approach is innovative, with a worldwide collection of academics (99 authors) collaborating to address the proposed question based on their reflections on daily social and academic practices. This collaboration followed a three-round process of contributions via email. Analysis of these scholars' reflective accounts was carried out, and a theoretical proposition was established from this analysis. The proposition is of a mutual (yet not necessarily balanced) power (and therefore political) relationship between the human and non-human constituents of an academic realm, with the two shaping one another. One implication of this proposition is that these non-human elements exist as political actors', just like their human counterparts, having agency' - which they exercise over humans. This turns academic domains into political (functional or dysfunctional) battlefields' wherein both humans and non-humans engage in political activities and actions that form the identity of the academic domain. For more information about the authorship approach, please see Al Lily AEA (2015) A crowd-authoring project on the scholarship of educational technology. Information Development. doi:10.1177/0266666915622044.
Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.
Importance Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs). Conclusions and Relevance The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer