Current clinical recommendations for patients with stable coronary artery disease (CAD) and those post-acute coronary syndromes (ACS) suggest initiation of patients on dual antiplatelet therapy, an angiotensin-converting enzyme (ACE) inhibitor, a beta-blocker and an HMG-CoA reductase inhibitor prior to hospital discharge. Commonly, this drug regimen is continued indefinitely. More recently, however, emerging evidence suggests that long-term therapy with beta-blockers may in fact be of no benefit to patients with stable CAD. This evidence-based review will summarize the current practice recommendations, as well as provide a critical analysis of available literature regarding beta-blockers in stable CAD. Both efficacy and safety will be considered and implications for current clinical practice will be discussed.
Abstract. This paper asserts that three principal frameworks for climate change adaptation can be recognised in the literature: scenario-led (SL), vulnerability-led (VL) and decision-centric (DC) frameworks. A criterion is developed to differentiate these frameworks in recent adaptation projects. The criterion features six key hallmarks as follows: (1) use of climate model information; (2) analysis of metrics/units; (3) socio-economic knowledge; (4) stakeholder engagement; (5) adaptation of implementation mechanisms; (6) tier of adaptation implementation. The paper then tests the validity of this approach using adaptation projects on the Suffolk coast, UK. Fourteen adaptation plans were identified in an online survey. They were analysed in relation to the hallmarks outlined above and assigned to an adaptation framework. The results show that while some adaptation plans are primarily SL, VL or DC, the majority are hybrid, showing a mixture of DC/VL and DC/SL characteristics. Interestingly, the SL/VL combination is not observed, perhaps because the DC framework is intermediate and attempts to overcome weaknesses of both SL and VL approaches. The majority (57 %) of adaptation projects generated a risk assessment or advice notes. Further development of this type of framework analysis would allow better guidance on approaches for organisations when implementing climate change adaptation initiatives, and other similar proactive long-term planning.
PurposeThe purpose of this study is to examine the satisfaction of older adults in the services they receive from the Neighbors Helping Neighbors (NHN) program – a program designed to assist older adults to remain independent in their homes and communities.Design/methodology/approachA questionnaire examining various domains of service was developed and administered to 49 older adults who had been receiving assistance from NHN for at least six months.FindingsFindings revealed that 87 percent (41) of the participants were satisfied with services and believed that NHN helped them remain independent in the community.Research limitations/implicationsThe study was a cross‐sectional design and did not look at change over time based on a pre/post test research design. Therefore, no causation can be implied. Another limitation is that the study was conducted internally by NHN; program participants may have responded in a socially desirable way in order not to reflect negatively on the program.Practical implicationsFindings from this study may have implications for developing sustainable home‐ and community‐based support programs for older adults.Social implicationsWith the aging of societies and cutbacks in government social services, it is important to examine how the needs of aging citizens can be met.Originality/valueThe paper shows that the NHN model is innovative in its use of students, community‐building approaches, and volunteers in meeting the needs of older adults. The NHN program provides an innovative model that can be replicated by other universities or other community‐based organizations around the country.
Persons above age 80 comprise the fastest growing segment of the U.S. population, and it is estimated that one in four will need long-term care due to increased disabilities and illness. A major concern for residents, families, and providers is to ensure care that "allows the resident to maintain or attain their highest practicable physical, mental and psychosocial well-being." The challenge is measuring a subjective concept such as well-being. The Eden Alternative is a current initiative aimed at improving the quality of life and well-being of long-term care residents. The initiative consists of providing long-term care environments that emphasize person-directed decision making and well-being. The purpose of this study was to explore the psychometric properties of the Eden Alternative Well-Being Assessment Tool (EAWBAT). There are three assessment tools designed to measure the well-being of elders (residents), family members of residents, and employees working in the long-term care environments. The sample consisted of 237 residents, 430 employees, and 134 family members from seven Eden Alternative organizations throughout the United States. Factor analysis was completed to identify the underlying structure in these data for elders, employees, and families. Reliability statistics were computed for each scale. Reliability statistics ranged from .876 (employee assessment tool) to .949 (family assessment tool), indicating the potential of the EAWBAT to measure the well-being of residents residing in long-term care environments, employees supporting them, and their family members.
There is a need for a contextual adaptation model of the Objective Structured Clinical Examination (OSCE) procedures and assessment methods into diverse contexts with great cultural diversity that is both affordable and achievable. This manuscript aims to describe the principles, organizational structure and theoretical framework of the Structured Multi-Skill Assessment (SMSA), a modified version of the OSCE and a performance-based assessment method developed at the Qatar University College of Pharmacy (QU CPH) that addresses contextual and cultural considerations when used in undergraduate pharmacy curricula.
AbstractSevere droughts in the late 1980s and 1990s have highlighted the fragility of many aquatic environments in southern England; in particular, declining river flows may be having an adverse affect on macrophytes in the chalk‐fed streams of the Rivers Test and Itchen. Detailed macrophyte survey data which were collected from representative sites in both rivers during 1991–1995 are interpreted in the context of changing hydroclimatic, water quality and in‐stream channel conditions. Multivariate statistical analyses support the assertion that river flow is the most significant parameter governing observed changes in macrophyte cover. During low flow years, filamentous algae have increased at most sites to the detriment of Ranunculus spp. These findings have catchment‐management implications which should be addressed if the long‐term integrity of such aquatic ecosystems is to be safeguarded.
Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions that characterize the former is therefore of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman–Monteith model (sc_PDSI_pm), covering the period 1950–2014, at 2.5 ∘ horizontal resolution. We find that the land areas affected by extreme wet, dry, and wet–dry events (i.e. geographically remote yet temporally co-occurring wet or dry extremes) are all increasing with time, the trends of which in dry and wet–dry episodes are significant ( p value ≪ 0.01). The most geographically widespread wet–dry event was associated with the strong La Niña in 2010. This caused wet–dry anomalies across a land area of 21 million km 2 with documented high-impact flooding and drought episodes spanning diverse regions. To further elucidate the interplay of wet and dry extremes at a grid cell scale, we introduce two new metrics: the wet–dry (WD) ratio and the extreme transition (ET) time intervals. The WD ratio measures the relative occurrence of wet or dry extremes, whereas ET quantifies the average separation time of hydrological extremes with opposite signs. The WD ratio shows that the incidence of wet extremes dominates over dry extremes in the USA, northern and southern South America, northern Europe, north Africa, western China, and most of Australia. Conversely, dry extremes are more prominent in most of the remaining regions. The median ET for wet to dry is ∼27 months, while the dry-to-wet median ET is 21 months. We also evaluate correlations between wet–dry hydrological extremes and leading modes of climate variability, namely the El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar influence globally, with the former significantly impacting ( p value < 0.05) a larger area (18.1 % of total sc_PDSI_pm area) compared to the latter (12.0 %), whereas the AMO shows an almost inverse pattern and significantly impacts the largest area overall (18.9 %). ENSO and PDO show the most significant correlations over northern South America, the central and western USA, the Middle East, eastern Russia, and eastern Australia. On the other hand, the AMO shows significant associations over Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Our analysis brings new insights on hydrological multi-hazards that are of relevance to governments and organizations with globally distributed interests. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.
Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions characterising the former is, therefore, of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman-Monteith model (sc_PDSI_pm) covering the period 1950–2014, at 2.5° horizontal resolution. We find that the land areas affected by extreme wet, dry and wet-dry events (i.e. geographically remote, yet temporally co-occurring wet or dry extremes) all display increasing trends with time, of which changes in dry and wet-dry episodes are significant ( p -value « 0.01). The most geographically widespread wet-dry event covered a combined land area of 21 million km 2 , with documented high-impact flooding and drought episodes spanning diverse regions. To further elucidate the interplay of wet and dry extremes at a grid-point scale, we introduce two new metrics: the wet-dry (WD) ratio and the extreme transition (ET) time interval. The WD-ratio measures the relative occurrence of extreme wet or dry events, whereas ET quantifies the average separation time of hydrological extremes with opposite signs. The WD-ratio shows that the incidence of extreme wet episodes dominates over dry episodes in the USA, northern and southern south America, northern Europe, north Africa, western China and most of Australia. Conversely, extreme dry events are more prominent in most of the remaining regions. The median ET for wet to dry is ~ 27 months, while the dry to wet median ET is 21 months. We also evaluate correlations between wet-dry hydrological extremes and leading modes of large-scale variability, namely the: El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and American Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar influence globally, with the former significantly impacting ( p -value < 0.05) a larger area compared to the latter, whereas the AMO shows an almost inverse pattern, and significantly impacts a larger overall area. Our analysis brings new insights on hydrological multi-hazards and are of direct relevance to governments and organisations with globally distributed interests, such as (re)insurance companies. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.
Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ; This paper describes the development of a method that couples flood modelling with network analysis to evaluate the accessibility of city districts by emergency responders during flood events. We integrate numerical modelling of flood inundation with geographical analysis of service areas for the Ambulance Service and the Fire & Rescue Service. The method was demonstrated for two flood events in the City of York, UK to assess the vulnerability of care homes and sheltered accommodation. We determine the feasibility of emergency services gaining access within the statutory 8- and 10-minute targets for high-priority, life-threatening incidents 75% of the time, during flood episodes. A hydrodynamic flood inundation model (FloodMap) simulates the 2014 pluvial and 2015 fluvial flood events. Predicted floods (with depth >25 cm and areas >100 m2) were overlain on the road network to identify sites with potentially restricted access. Accessibility of the city to emergency responders during flooding was quantified and mapped using; (i) spatial coverage from individual emergency nodes within the legislated timeframes, and; (ii) response times from individual emergency service nodes to vulnerable care homes and sheltered accommodation under flood and non-flood conditions. Results show that, during the 2015 fluvial flood, the area covered by two of the three Fire & Rescue Service stations reduced by 14% and 39% respectively, while the remaining station needed to increase its coverage by 39%. This amounts to an overall reduction of 6% and 20% for modelled and observed floods respectively. During the 2014 surface water flood, 7 out of 22 care homes (32%) and 15 out of 43 sheltered accommodation nodes (35%) had modelled response times above the 8-minute threshold from any Ambulance station. Overall, modelled surface water flooding has a larger spatial footprint than fluvial flood events. Hence, accessibility of emergency services may be impacted differently depending on flood mechanism. Moreover, we expect emergency services to face greater challenges under a changing climate with a growing, more vulnerable population. The methodology developed in this study could be applied to other cities, as well as for scenario based evaluation of emergency preparedness to support strategic decision making, and in real-time forecasting to guide operational decisions where heavy rainfall lead-time and spatial resolution are sufficient.
Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions that characterize the former is therefore of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman-Monteith model (sc_PDSI_pm), covering the period 1950-2014, at 2.5 degrees horizontal resolution. We find that the land areas affected by extreme wet, dry, and wet-dry events (i.e. geographically remote yet temporally co-occurring wet or dry extremes) are all increasing with time, the trends of which in dry and wet-dry episodes are significant (p value « 0.01). The most geographically widespread wet-dry event was associated with the strong La Nina in 2010. This caused wet-dry anomalies across a land area of 21 million km(2) with documented high-impact flooding and drought episodes spanning diverse regions. To further elucidate the interplay of wet and dry extremes at a grid cell scale, we introduce two new metrics: the wet-dry (WD) ratio and the extreme transition (ET) time intervals. The WD ratio measures the relative occurrence of wet or dry extremes, whereas ET quantifies the average separation time of hydrological extremes with opposite signs. The WD ratio shows that the incidence of wet extremes dominates over dry extremes in the USA, northern and southern South America, northern Europe, north Africa, western China, and most of Australia. Conversely, dry extremes are more prominent in most of the remaining regions. The median ET for wet to dry is similar to 27 months, while the dry-to-wet median ET is 21 months. We also evaluate correlations between wet-dry hydrological extremes and leading modes of climate variability, namely the El Nina-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar influence globally, with the former significantly impacting (p value < 0.05) a larger area (18.1 % of total sc_PDSI_pm area) compared to the latter (12.0 %), whereas the AMO shows an almost inverse pattern and significantly impacts the largest area overall (18.9 %). ENSO and PDO show the most significant correlations over northern South America, the central and western USA, the Middle East, eastern Russia, and eastern Australia. On the other hand, the AMO shows significant associations over Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Our analysis brings new insights on hydrological multi-hazards that are of relevance to governments and organizations with globally distributed interests. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.
In: De Luca , P , Messori , G , Wilby , R L , Mazzoleni , M & Di Baldassarre , G 2020 , ' Concurrent wet and dry hydrological extremes at the global scale ' , Earth System Dynamics , vol. 11 , no. 1 , 14 , pp. 251-266 . https://doi.org/10.5194/esd-11-251-2020
Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions that characterize the former is therefore of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman-Monteith model (sc-PDSI-pm), covering the period 1950-2014, at 2.5° horizontal resolution. We find that the land areas affected by extreme wet, dry, and wet-dry events (i.e. geographically remote yet temporally co-occurring wet or dry extremes) are all increasing with time, the trends of which in dry and wet-dry episodes are significant (p value ≪ 0.01). The most geographically widespread wet-dry event was associated with the strong La Niña in 2010. This caused wet-dry anomalies across a land area of 21 million km 2 with documented high-impact flooding and drought episodes spanning diverse regions. To further elucidate the interplay of wet and dry extremes at a grid cell scale, we introduce two new metrics: the wet-dry (WD) ratio and the extreme transition (ET) time intervals. The WD ratio measures the relative occurrence of wet or dry extremes, whereas ET quantifies the average separation time of hydrological extremes with opposite signs. The WD ratio shows that the incidence of wet extremes dominates over dry extremes in the USA, northern and southern South America, northern Europe, north Africa, western China, and most of Australia. Conversely, dry extremes are more prominent in most of the remaining regions. The median ET for wet to dry is ∼27 months, while the dry-to-wet median ET is 21 months. We also evaluate correlations between wet-dry hydrological extremes and leading modes of climate variability, namely the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar influence globally, with the former significantly impacting (p value < 0.05) a larger area (18.1 % of total sc-PDSI-pm area) compared to the latter (12.0 %), whereas the AMO shows an almost inverse pattern and significantly impacts the largest area overall (18.9 %). ENSO and PDO show the most significant correlations over northern South America, the central and western USA, the Middle East, eastern Russia, and eastern Australia. On the other hand, the AMO shows significant associations over Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Our analysis brings new insights on hydrological multi-hazards that are of relevance to governments and organizations with globally distributed interests. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.
Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions that characterize the former is therefore of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman–Monteith model (sc_PDSI_pm), covering the period 1950–2014, at 2.5∘ horizontal resolution. We find that the land areas affected by extreme wet, dry, and wet–dry events (i.e. geographically remote yet temporally co-occurring wet or dry extremes) are all increasing with time, the trends of which in dry and wet–dry episodes are significant (p value ≪ 0.01). The most geographically widespread wet–dry event was associated with the strong La Niña in 2010. This caused wet–dry anomalies across a land area of 21 million km2 with documented high-impact flooding and drought episodes spanning diverse regions. To further elucidate the interplay of wet and dry extremes at a grid cell scale, we introduce two new metrics: the wet–dry (WD) ratio and the extreme transition (ET) time intervals. The WD ratio measures the relative occurrence of wet or dry extremes, whereas ET quantifies the average separation time of hydrological extremes with opposite signs. The WD ratio shows that the incidence of wet extremes dominates over dry extremes in the USA, northern and southern South America, northern Europe, north Africa, western China, and most of Australia. Conversely, dry extremes are more prominent in most of the remaining regions. The median ET for wet to dry is ∼27 months, while the dry-to-wet median ET is 21 months. We also evaluate correlations between wet–dry hydrological extremes and leading modes of climate variability, namely the El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar influence globally, with the former significantly impacting (p value < 0.05) a larger area (18.1 % of total sc_PDSI_pm area) compared to the latter (12.0 %), whereas the AMO shows an almost inverse pattern and significantly impacts the largest area overall (18.9 %). ENSO and PDO show the most significant correlations over northern South America, the central and western USA, the Middle East, eastern Russia, and eastern Australia. On the other hand, the AMO shows significant associations over Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Our analysis brings new insights on hydrological multi-hazards that are of relevance to governments and organizations with globally distributed interests. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.