The North China Plain (NCP) is one of the major agricultural regions in China. Winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) are currently the two main crops combined in a single-year rotation also referred to as a double cropping system. Grain production in the NCP has experienced multiple changes over the last decades due to many factors including shortages in water resources, government policy, etc. This paper analyzes the changes in yield performance of wheat and maize during 1984-2003. Results showed that in general a more intensive use of productive inputs seemed to be associated with higher yields. Further results clearly indicated that water shortage is currently the main problem in the traditional double cropping system and can endanger the desired self-sufficiency of China in the future. Therefore future profound policy changes may make the question of yield performance as important as the questions to adopt new crops or new cropping systems. This study suggests tat changes from the traditional double cropping system to single spring maize cultivation might solve parts of the water shortage problems while maintaining at the same time high yields. ; Die Nordchinesische Tiefebene (NCP) ist eines der wichtigsten Agrarregionen in China. Winterweizen (Triticum aestivum L.) und Sommermais (Zea mays L.) sind gegenwärtig die zwei Hauptfrüchte und werden in einer einjährigen Rotation kombiniert, die auch als Winterweizen- Sommermais Double-Cropping System bezeichnet wird. Die Getreideproduktion in der NCP hat sich in den letzten Jahrzehnten unter dem Einfluss vieler Faktoren wie beispielsweise Wasserknappheit, politischen Regelungen usw. zunehmend verändert. Im vorliegenden Artikel wurden die Änderungen in der Ertragsleistung von Weizen und Mais während der Jahre 1984-2003 untersucht. Im allgemeinem betrachtet, zeigten die Ergebnisse, dass durch den intensiven Einsatz von Produktionsfaktoren die Erträge anstiegen. Weiterhin wurde deutlich, dass die Verknappung von Wasser gegenwärtig das ...
Currently, surface subsidence has become an important problem what we are facing. Because of complex topography, uneven distribution of rainfall, and the fast development of urbanization, many cities of the world have undergone surface subsidence disaster, such as Chiba, Paris, Tokyo, Beijing. The surface subsidence has occurred in Chiba since the early twenty-first century. The surface subsidence seriously threatens the safety of human life and property. In order to monitor surface subsidence, people have done a lot of research, and time-series InSAR technique with its better coverage, lower cost and high measurement accuracy advantages shows great potentiality for monitoring surface subsidence. Time-series InSAR technique can be applied for analysis of subtle surface subsidence which occurred consistently for a long term period. This paper uses time-series InSAR technique, Permanent Scatterers Interferometric SAR (PSInSAR), to monitor surface subsidence of Chiba. The used dataset consists of thirty-four Envisat ASAR images from September 2006 to August 2010. For the experimental results, this paper uses GPS data to verify the reliability of the results, and the results can provide information for local government to prevent the occurrence of surface subsidence.
Currently, surface subsidence has become an important problem what we are facing. Because of complex topography, uneven distribution of rainfall, and the fast development of urbanization, many cities of the world have undergone surface subsidence disaster, such as Chiba, Paris, Tokyo, Beijing. The surface subsidence has occurred in Chiba since the early twenty-first century. The surface subsidence seriously threatens the safety of human life and property. In order to monitor surface subsidence, people have done a lot of research, and time-series InSAR technique with its better coverage, lower cost and high measurement accuracy advantages shows great potentiality for monitoring surface subsidence. Time-series InSAR technique can be applied for analysis of subtle surface subsidence which occurred consistently for a long term period. This paper uses time-series InSAR technique, Permanent Scatterers Interferometric SAR (PSInSAR), to monitor surface subsidence of Chiba. The used dataset consists of thirty-four Envisat ASAR images from September 2006 to August 2010. For the experimental results, this paper uses GPS data to verify the reliability of the results, and the results can provide information for local government to prevent the occurrence of surface subsidence.
In: Bulletin of the World Health Organization: the international journal of public health = Bulletin de l'Organisation Mondiale de la Santé, Band 86, Heft 10, S. 757-764
We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low-energy e (+) e (-) colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on tau decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and tau decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed. ; This work was supported in part by: – European Union Marie-Curie Research Training Networks MRTN-CT-2006-035482 "FLAVIAnet" andMRTN-CT-2006- 035505 "HEPTOOLS"; – European Union Research Programmes at LNF, FP7, Transnational Access to Research Infrastructure (TARI), Hadron Physics2-Integrating Activity, Contract No. 227431; – Generalitat Valenciana under Grant No. PROMETEO/2008/069; – German Federal Ministry of Education and Research (BMBF) grants 05HT4VKA/3, 06-KA-202 and 06-MZ-9171I; – German Research Foundation (DFG): 'Emmy Noether Programme', contracts DE839/1-4, 'Heisenberg Programme' and Sonderforschungsbereich/Transregio SFB/TRR 9; – Initiative and Networking Fund of the Helmholtz Association, contract HA-101 ("Physics at the Terascale"); – INTAS project Nr 05-1000008-8328 "Higher-order effects in e+e− annihilation and muon anomalous magnetic moment"; – Ministerio de Ciencia e Innovación under Grant No. FPA2007- 60323, and CPAN (Grant No. CSD2007-00042); – National Natural Science Foundation of China under Contracts Nos. 10775142, 10825524 and 10935008; – Polish Government grant N202 06434 (2008-2010); – PST.CLG.980342 – Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists; – RFBR grants 03-02-16477, 04-02-16217, 04-02-1623, 04-02- 16443, 04-02-16181-a, 04-02-16184-a, 05-02-16250-a, 06-02- 16192-a, 07-02-00816-a, 08-02-13516, 08-02-91969 and 09- 02-01143; – Theory-LHC-France initiative of CNRS/IN2P3; – US DOE contract DE-FG02-09ER41600. We thank J. Libby for useful correspondence about the luminosity measurement at CLEO-c, and A. Pich, J. Portolés, D. Gómez-Dumm, M. Jamin and Z.H. Guo for fruitful collaborations and useful suggestions related to the Tau Physics section. S. Eidelman and V. Cherepanov are grateful to the Cracow Institute of Nuclear Physics where part of this work has been performed. M. Gunia acknowledges a scholarship from the UPGOW project co-financed by the European Social Fund. F. Jegerlehner acknowledges support by the Foundation for Polish Science. ; Peer reviewed
Glycosylation is a topic of intense current interest in the development of biopharmaceuticals since it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.
Using the data sets taken at center-of-mass energies above 4 GeV by the BESIII detector at the BEPCII storage ring, we search for the reaction e(+)e(-) -> gamma(ISR) X(3872) -> gamma(ISR)pi(+)pi(-) J/psi via the Initial State Radiation technique. The production of a resonance with quantum numbers J(PC) = 1(++) such as the X(3872) via single photon e(+)e(-) annihilation is forbidden, but is allowed by a next-to-leading order box diagram. We do not observe a significant signal of X(3872), and therefore give an upper limit for the electronic width times the branching fraction Gamma B-X(3872)(ee)(X(3872) -> pi(+)pi(-) J/psi) < 0.13 eVat the 90% confidence level. This measurement improves upon existing limits by a factor of 46. Using the same final state, we also measure the electronic width of the psi(3686) to be Gamma(psi)(ee)(3686) ee = 2213 +/- 18(stat) +/- 99(sys) eV. ; Funding: The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by the National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contract Nos. 11125525, 11235011, 11322544, 11335008, 11425524; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract Nos. 11179007, U1232201, U1332201; CAS under Contract Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. CRC-1044; Seventh Framework Programme of the European Union under Marie Curie International Incoming Fellowship Grant Agreement No. 627240; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; Russian Foundation for Basic Research under Contract No. 14-07-91152; U.S. Department of Energy under Contract Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118; U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fur Schwerionenforschung (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.
ANPCyT, Argentina ; YerPhI, Armenia ; ARC, Australia ; BMWFW, Austria ; FWF, Austria ; ANAS, Azerbaijan ; SSTC, Belarus ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; NSERC, Canada ; NRC, Canada ; CFI, Canada ; CERN ; CONICYT, Chile ; CAS, China ; MOST, China ; NSFC, China ; COLCIENCIAS, Colombia ; MSMT CR, Czech Republic ; MPO CR, Czech Republic ; VSC CR, Czech Republic ; DNRF, Denmark ; DNSRC, Denmark ; IN2P3-CNRS, CEA-DRF/IRFU, France ; SRNSFG, Georgia ; BMBF, Germany ; HGF, Germany ; MPG, Germany ; GSRT, Greece ; RGC, Hong Kong SAR, China ; ISF, Israel ; Benoziyo Center, Israel ; INFN, Italy ; MEXT, Japan ; JSPS, Japan ; CNRST, Morocco ; NWO, Netherlands ; RCN, Norway ; MNiSW, Poland ; NCN, Poland ; FCT, Portugal ; MNE/IFA, Romania ; MES of Russia, Russian Federation ; NRC KI, Russian Federation ; JINR ; MESTD, Serbia ; MSSR, Slovakia ; ARRS, Slovenia ; MIZS, Slovenia ; DST/NRF, South Africa ; MINECO, Spain ; SRC, Sweden ; Wallenberg Foundation, Sweden ; SERI, Switzerland ; SNSF, Switzerland ; Canton of Bern, Switzerland ; MOST, Taiwan ; TAEK, Turkey ; STFC, United Kingdom ; DOE, United States of America ; NSF, United States of America ; BCKDF, Canada ; CANARIE, Canada ; CRC, Canada ; Compute Canada, Canada ; COST, European Union ; ERC, European Union ; ERDF, European Union ; Horizon 2020, European Union ; Marie Sk lodowska-Curie Actions, European Union ; Investissements d' Avenir Labex and Idex, ANR, France ; DFG, Germany ; AvH Foundation, Germany ; Greek NSRF, Greece ; BSF-NSF, Israel ; GIF, Israel ; CERCA Programme Generalitat de Catalunya, Spain ; Royal Society, United Kingdom ; Leverhulme Trust, United Kingdom ; BMBWF (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FAPERGS (Brazil) ; MES (Bulgaria) ; CAS (China) ; MoST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; SENESCYT (Ecuador) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; NKFIA (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; MSIP (Republic of Korea) ; NRF (Republic of Korea) ; MES (Latvia) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; BUAP (Mexico) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; LNS (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MOS (Montenegro) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; NRC KI (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; PCTI (Spain) ; FEDER (Spain) ; MOSTR (Sri Lanka) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TAEK (Turkey) ; NASU (Ukraine) ; SFFR (Ukraine) ; STFC (United Kingdom ; DOE (U.S.A.) ; NSF (U.S.A.) ; Marie-Curie programme ; Horizon 2020 Grant (European Union) ; Leventis Foundation ; A.P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; F.R.S.-FNRS (Belgium) ; Beijing Municipal Science & Technology Commission ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Hungarian Academy of Sciences (Hungary) ; New National Excellence Program UNKP (Hungary) ; Council of Science and Industrial Research, India ; HOMING PLUS programme of the Foundation for Polish Science ; European Union, Regional Development Fund ; Mobility Plus programme of the Ministry of Science and Higher Education ; National Science Center (Poland) ; National Priorities Research Program by Qatar National Research Fund ; Programa Estatal de Fomento de la Investigacion Cientfica y Tecnica de Excelencia Maria de Maeztu ; Programa Severo Ochoa del Principado de Asturias ; EU-ESF ; Greek NSRF ; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand) ; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand) ; Welch Foundation ; Weston Havens Foundation (U.S.A.) ; Canton of Geneva, Switzerland ; Herakleitos programme ; Thales programme ; Aristeia programme ; European Research Council (European Union) ; Horizon 2020 Grant (European Union): 675440 ; FWO (Belgium): 30820817 ; Beijing Municipal Science & Technology Commission: Z181100004218003 ; NKFIA (Hungary): 123842 ; NKFIA (Hungary): 123959 ; NKFIA (Hungary): 124845 ; NKFIA (Hungary): 124850 ; NKFIA (Hungary): 125105 ; National Science Center (Poland): Harmonia 2014/14/M/ST2/00428 ; National Science Center (Poland): Opus 2014/13/B/ST2/02543 ; National Science Center (Poland): 2014/15/B/ST2/03998 ; National Science Center (Poland): 2015/19/B/ST2/02861 ; National Science Center (Poland): Sonata-bis 2012/07/E/ST2/01406 ; Programa Estatal de Fomento de la Investigacion Cientfica y Tecnica de Excelencia Maria de Maeztu: MDM-2015-0509 ; Welch Foundation: C-1845 ; This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| « |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.