A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1) recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs. ; ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; ERDF, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; Leverhulme Trust, United Kingdom; Herakleitos program - EU-ESF; Thales program - EU-ESF; Aristeia program - EU-ESF; Greek NSRF; Royal Society, United Kingdom ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode ZH -> l(+)l(-) cc is studied. A data set with an integrated luminosity of 36.1 fb(-1) of pp collisions at root s = 13TeV recorded by the ATLAS experiment at the LHC is used. The H -> cc signature is identified using charm-tagging algorithms. The observed (expected) upper limit on sigma(pp -> ZH) x B(H -> cc) is 2.7 (3.9(-2.1)(+2.1) ) pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb. ; ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS , Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Cantons of Bern, Switzerland; Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF; Canada Council; CANARIE; CRC, Compute Canada; FQRNT; Ontario Innovation Trust, Canada; EPLANET; ERC; ERDF; FP7, Horizon and Marie Sklodowska-Curie Actions; European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos, Thales; EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society and Leverhulme Trust, United Kingdom; ATLAS Tier-1 facilities at TRIUMF (Canada); NDGF (Denmark, Norway, Sweden); CC-IN2P3 (France); KIT/GridKA (Germany); INFN-CNAF (Italy); NL-T1 (Netherlands); PIC (Spain); ASGC (Taiwan); RAL (UK); BNL (USA) ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
A search for the narrow structure, X(5568), reported by the DO Collaboration in the decay sequence X -> B-s(0) pi +/-, B-s(0) -> J/psi phi, is presented. The analysis is based on a data sample recorded with the ATLAS detector at the LHC corresponding to 4.9 fb(-1) of pp collisions at 7 TeV and 19.5 fb(-1)at 8 TeV. No significant signal was found. Upper limits on the number of signal events, with properties corresponding to those reported by DO, and on the A production rate relative to B-s(0) mesons, rho x, were determined at 95% confidence level. The results are N(X) < 382 and rho x <0.015 for B-s(0) mesons with transverse momenta above 10 GeV and N(X) < 356 and rho(x) < 0.016 for transverse momenta above 15 GeV. Limits are also set for potential B-s(0) pi(+) resonances in the mass range 5550 to 5700 MeV. ; ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, USA; NSF, USA; BCKDF; Canada Council; CANARIE; CRC; Compute Canada; FQRNT; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; ERDF, European Union; FP7, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
On 17 August 2017, the Advanced LIGO(1) and Virgo(2) detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system(3). Less than two seconds after the merger, a gamma-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source(4-6). This sky region was subsequently observed by optical astronomy facilities(7), resulting in the identification(8-13) of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren'(14-18) (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder'(19): the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements(20,21), while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision. ; United States National Science Foundation (NSF) Science and Technology Facilities Council (STFC) of the United Kingdom Max-Planck-Society (MPS) State of Niedersachsen/Germany Australian Research Council Netherlands Organisation for Scientific Research EGO consortium Council of Scientific and Industrial Research of India Department of Science and Technology, India Science and Engineering Research Board (SERB), India Ministry of Human Resource Development, India Spanish Agencia Estatal de Investigation Vicepresidencia i Conselleria d'Innovacio, Recerca i Turisme Conselleria d'Educacia i Universitet del Govern de les Illes Balears Conselleria d'Educacia, Investigacio, Culture i Esport de la Generalitat Valenciana National Science Centre of Poland Swiss National Science Foundation (SNSF) Russian Foundation for Basic Research Russian Science Foundation European Commission European Regional Development Funds (ERDF) Royal Society Scottish Funding Council Scottish Universities Physics Alliance Hungarian Scientific Research Fund (OTKA) Lyon Institute of Origins (LIO) National Research, Development and Innovation Office Hungary (NKFI) National Research Foundation of Korea, Industry Canada Province of Ontario through the Ministry of Economic Development and Innovation Natural Science and Engineering Research Council Canada Canadian Institute for Advanced Research Brazilian Ministry of Science, Technology, Innovations, and Communications International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR) Research Grants Council of Hong Kong National Natural Science Foundation of China (NSFC) Leverhulme Trust Research Corporation Ministry of Science and Technology (MOST), Taiwan Kavli Foundation NSF STFC MPS INFN CNRS Danish National Research Foundation Niels Bohr International Academy DARK Cosmology Centre NSF AST-1518052 AST-1411763 AST-1714498 AST -1138766 AST-1536171 AST-1517649 AST-1313484 Gordon & Betty Moore Foundation Heising-Simons Foundation UCSC Giving Day grant Alfred P. Sloan Foundation David and Lucile Packard Foundation Niels Bohr Professorship from the DNRF UCMEXUS-CONACYT Doctoral Fellowship NASA through Hubble Fellowship - Space Telescope Science Institute HST-HF-51348.001 HST-HF-51373.001 NASA NAS5-26555 NNX15AE50G NNX16AC22G DOE (USA) NSF (USA) MEC/MICINN/MINECO (Spain) STFC (UK) HEFCE (UK) NCSA (UIUC) KICP (U. Chicago) CCAPP (Ohio State) MIFPA (Texas AM) CNPQ (Brazil) FAPERJ (Brazil) FINEP (Brazil) DFG (Germany) Argonne Lab UC Santa Cruz University of Cambridge Dark Energy Survey CIEMAT-Madrid University of Chicago University College London DES-Brazil Consortium University of Edinburgh ETH Zurich Fermilab University of Illinois ICE (IEEC-CSIC) IFAE Barcelona Lawrence Berkeley Lab LMU Munchen associated Excellence Cluster Universe University of Michigan NOAO University of Nottingham Ohio State University University of Pennsylvania University of Portsmouth SLAC National Lab Stanford University University of Sussex Texas AM University OzDES Membership Consortium MINECO AYA2015-71825 ESP2015-88861 FPA2015-68048 Centro de Excelencia SEV-2012-0234 SEV-2016-0597 MDM-2015-0509 ERC under the European Union's Seventh Framework Programme ERC 240672 291329 306478 Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) CE110001020 US Department of Energy, Office of Science, Office of High Energy Physics DE-AC02-07CH11359 NASA through the Einstein Fellowship Program PF6-170148 Israel Science Foundation 541/17
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of similar to 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40(-8)(+8) Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M-circle dot. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at similar to 40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over similar to 10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position similar to 9 and similar to 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta. ; Kavli Foundation; Danish National Research Foundation; Niels Bohr International Academy; DARK Cosmology Centre; NSF [AST-1518052, AST-141242, AST-1411763, AST-1714498, AST-1517649, PHY-1607291, AST-1412421, AST-1313484]; Gordon AMP; Betty Moore Foundation; Heising-Simons Foundation; Alfred P. Sloan Foundation; David and Lucile Packard Foundation; DNRF; UCMEXUS-CONACYT; NASA - Space Telescope Science Institute [HST-HF-51348.001, HST-HF-51373.001]; NASA [NAS5-26555, NNX15AE50G, NNX16AC22G, NAS5-00136, NNX08AR22G, NNX12AR65G, NNX14AM74G, NNX12AR55G, NNM13AA43C, NNM11AA01A, NNX15AE60G, PF6-170148, PF7-180162]; INAF; INFN; ASI [I/028/12/2]; Centre National de la Recherche Scientifique (CNRS), France; Commissariat a l'energie atomique et aux energies alternatives (CEA), France; Commission Europeenne (FEDER), France; Commission Europeenne, France; Institut Universitaire de France (IUF), France; IdEx, France; Sorbonne Paris Cite, France [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]; Labex OCEVU, France [ANR-11-LABX-0060]; A*MIDEX, France [ANR-11-IDEX-0001-02]; Region Ile-de-France (DIM-ACAV), France; Region Alsace (CPER), France; Region Provence-Alpes-Cite d'Azur, France; Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO): Plan Estatal de Investigacion (MINECO/FEDER), Spain [FPA2015-65150-C3-1-P, FPA2015-65150-C3-2-P, FPA2015-65150-C3-3-P]; Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), Spain; Prometeo program (Generalitat Valenciana), Spain; Grisolia program (Generalitat Valenciana), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco; National Basic Research Program (973 Program) of China [2013CB834901, 2013CB834900, 2013CB834903]; Chinese Polar Environment Comprehensive Investigation AMP; Assessment Program [CHINARE2016-02-03-05]; Tsinghua University; Nanjing University; Beijing Normal University; University of New South Wales; Texas AM University; Australian Antarctic Division; National Collaborative Research Infrastructure Strategy (NCRIS) of Australia; Chinese Academy of Sciences through Center for Astronomical Mega-Science; National Astronomical Observatory of China (NAOC); Argentina-Comision Nacional de Energia Atomica; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; Australia-the Australian Research Council; Brazil-Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Sao Paulo Research Foundation (FAPESP) [2010/07359-6, 1999/05404-3]; Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (MCTIC); Czech Republic [MSMT CR LG15014, LO1305, LM2015038, CZ.02.1.01/0.0/0.0/16_013/0001402]; France-Centre de Calcul IN2P3/CNRS; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS); Departement Sciences de l'Univers (SDU-INSU/CNRS); Institut Lagrange de Paris (ILP) within Investissements d'Avenir Programme [LABEX ANR-10-LABX-63, ANR-11-IDEX-0004-02]; Germany-Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz Alliance for Astroparticle Physics (HAP); Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen; Ministerium fur Wissenschaft, Forschung und Kunst des Landes Baden-Wurttemberg; Italy-Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR); CETEMPS Center of Excellence; Ministero degli Affari Esteri (MAE); Mexico-Consejo Nacional de Ciencia y Tecnologia (CONACYT) [167733]; Universidad Nacional Autonoma de Mexico (UNAM); PAPIIT DGAPA-UNAM; Netherlands - Ministerie van Onderwijs, Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Poland-National Centre for Research and Development [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, HARMONIA 5-2013/10/M/ST9/00062, UMO-2016/22/M/ST9/00198]; Portugal-Portuguese national funds; FEDER within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE); Romania-Romanian Authority for Scientific Research ANCS; CNDI-UEFISCDI [20/2012, 194/2012, PN 16 42 01 02]; Slovenia-Slovenian Research Agency; Spain-Comunidad de Madrid; Fondo Europeo de Desarrollo Regional (FEDER); Ministerio de Economia y Competitividad; Xunta de Galicia; European Community 7th Framework Program [FP7-PEOPLE-2012-IEF-328826]; USA-Department of Energy [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, DE-SC0011689]; National Science Foundation [0450696]; Grainger Foundation; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; European Union 7th Framework Program [PIRSES-2009-GA-246806]; European Union's Horizon research and innovation programme [646623]; UNESCO; Australian Research Council [FT150100099, FL15010014]; Australian Research Council; Australian Government; Australian Government (NCRIS); Western Australian and Australian Governments; National Collaborative Research Infrastructure Strategy; Australian Research Council Centre of Excellence for All-sky Astrophysics in 3D (ASTRO 3D) [CE170100013]; Spanish Ministry [AYA 2015-71718-R]; Junta de Andalucia Proyecto de Excelencia [TIC-2839]; National Research Foundation [NRF-2015R1A2A1A01006870, DGE-1144469]; Korea Basic Science Research Program [NRF2014R1A6A3A03057484, NRF-2015R1D1A4A01020961]; Consejo Nacional de Ciencia y Tecnologia (Mexico) through Laboratorios Nacionales Program (Mexico); Instituto de Astrofisica de Andalucia (IAA-CSIC, Spain); Sungkyunkwan University (SKKU, South Korea); Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; ARC LIEF from Australian Research Council [LE130100104]; NASA; ASI; JAXA; MEXT KAKENHI [JP 17H06362, JP26220708, JP17H02901, JP17H06363, JP15H00788, JP24103003, JP10147214, JP10147207]; Chandra X-ray Observatory Center [GO7-18033X]; National Aeronautics Space Administration (NASA) [NAS8-03060]; Natural Sciences and Engineering Research Council of Canada (NSERC); Fonds de recherche du Quebec-Nature et Technologies (FRQNT); UKSA; Canadian Institute for Advanced Research (CIFAR); Indian Space Research Organisation; European Unions Horizon research and innovation programme [653477]; ESO [199.D-0143, 099.D-0376]; DFG [HA 1850/28-1, Kl 766/16-3]; EU/FP7-ERC [291222, 615929, 647208, 725161]; STFC [ST/P000312/1]; ERF [ST/M005348/1, ST/P000495/1]; Marie Sklodowska-Curie [702538]; Polish NCN [OPUS 2015/17/B/ST9/03167]; Knut and Alice Wallenberg Foundation; California Institute of Technology; Alexander von Humboldt Sofja Kovalevskaja Award; FONDECYT [3160504]; US NSF [AST-1311862]; Quantum Universe I-Core program; Kimmel award; IRC [GOIPG/2017/1525]; Australian Research Council CAASTRO [CE110001020, FT160100028]; Millennium Science Initiative [IC120009]; NASA through Fermi-GBM; Bundesministerium fur Bildung und Forschung (BMBF) via Deutsches Zentrum fur Luft und Raumfahrt (DLR) [50 QV 0301]; Bundesministeriums fur Wirtschaft und Technologie (BMWi) through DLR [50 OG 1101]; Science Foundation Ireland [12/IP/1288]; NASA (United States); DOE (United States); CEA/Irfu (France); IN2P3/CNRS (France); ASI (Italy); INFN (Italy); MEXT (Japan); KEK (Japan); JAXA (Japan); K.A. Wallenberg Foundation; Swedish Research Council; National Space Board (Sweden); INAF (Italy); CNES (France); DOE [DE-AC02-76SF00515]; Office of Naval Research [N00014-07-C0147]; National Science Foundation under University Radio Observatory [AST-1139963, AST-1139974]; ESO Telescopes at the Paranal Observatory [099.D-0382, 099.D-0622, 099.D-0191, 099.D-0116]; REM telescope at the ESO La Silla Observatory [35020]; Department of University and Research (MIUR); Italian Space Agency (ASI); Autonomous Region of Sardinia (RAS); National Institute for Astrophysics (INAF); BIC [114332KYSB20160007]; Hundred Talent Program; Chinese Academy of Sciences [KJZD-EW-M06]; National Natural Science Foundation of China [11673062]; Oversea Talent Program of Yunnan Province; STFC (Science and Technology Facilities Council); Slovenian Research Agency [P1-0188]; Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]; JSPS [15H05437]; JST Consortia; GROWTH (Global Relay of Observatories Watching Transients Happen) - National Science Foundation under PIRE [1545949]; California Institute of Technology (USA); University of Maryland College Park (USA); University of Wisconsin-Milwaukee (USA); Texas Tech University (USA); San Diego State University (USA); Los Alamos National Laboratory (USA); Tokyo Institute of Technology (Japan); National Central University (Taiwan); Indian Institute of Astrophysics (India); Inter-University Center for Astronomy and Astrophysics (India); Weizmann Institute of Science (Israel); Oskar Klein Centre at Stockholm University (Sweden); Humboldt University (Germany); Liverpool John Moores University (UK); Planning and Budgeting Committee; Israel Science Foundation; Large Synoptic Survey Telescope Corporation; National Science Foundation CAREER [1455090]; ERC grant TReX; Naval Research Laboratory (NRL); NRL; Oxford Centre for Astrophysical Surveys; Hintze Family Charitable Foundation; Swedish Research Council (V.R.); Israel Science Foundation, Minerva, Israeli ministry of Science; US-Israel Binational Science Foundation; I-CORE of the Planning and Budgeting Committee; Swedish Research Council (VR) [2016 03657 3]; Swedish National Space Board [Dnr. 107/16]; Gravitational Radiation and Electromagnetic Astrophysical Transients (GREAT) - Swedish Research council (V.R.) [Dnr. 2016-06012]; Science and Engineering Research Board, Department of Science and Technology, India; Indo-US Science and Technology Foundation; US National Science Foundation (NSF); US Department of Energy Office of High-Energy Physics; Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico [271051, 232656, 167281, 260378, 179588, 239762, 254964, 271737, 258865, 243290]; Red HAWC, Mexico; DGAPA-UNAM [RG100414, IN111315, IN111716-3, IA102715, 109916]; VIEP-BUAP; University of Wisconsin Alumni Research Foundation; Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory; Polish Science Centre [DEC-2014/13/B/ST9/945]; German Ministry for Education and Research (BMBF); Max Planck Society; German Research Foundation (DFG); Alexander von Humboldt Foundation; Deutsche Forschungsgemeinschaft; French Ministry for Research; CNRS-IN2P3; Astroparticle Interdisciplinary Programme of the CNRS; U.K. Science and Technology Facilities Council (STFC); IPNP of the Charles University; Czech Science Foundation; Polish National Science Centre; South African Department of Science and Technology; National Research Foundation; University of Namibia; National Commission on Research, Science and Technology of Namibia (NCRST); Innsbruck University; Austrian Science Fund (FWF); Austrian Federal Ministry for Science, Research and Economy; University of Adelaide; Japan Society for the Promotion of Science; University of Amsterdam; EGI Federation; China National Space Administration (CNSA); Chinese Academy of Sciences (CAS) [XDB23040400]; Ministry of Science and Technology of China (MOST) [2016YFA0400800]; U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council, Sweden; Swedish Polar Research Secretariat, Sweden; Swedish National Infrastructure for Computing (SNIC), Sweden; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Initiative and Networking Fund of the Helmholtz Association, Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute; Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Villum Fonden, Denmark; Danish National Research Foundation (DNRF), Denmark; Russian Science Foundation [15-1230015, 14-22-00271]; Science and Education Ministry of Kazakhstan [0075/GF4]; RUSTAVELI [FR/379/6-300/14]; ESA Denmark; ESA France; ESA Germany; ESA Italy; ESA Switzerland; ESA Spain; ESA Russia; ESA USA; CEA; CNES; DLR; ESA; INTA; OSTC; ASI/INAF [2013-025-R.1]; German INTEGRAL through DLR [50 OG 1101]; Spanish MINECO/FEDER [ESP2015-65712-C5-1-R]; RFBR [16-29-13009-ofi-m]; JSPS KAKENHI [JP16H02183, JP15H02075, JP15H02069, JP26800103, JP25800103]; Inter-University Cooperation Program of the MEXT; NINS program; Toyota Foundation [D11-R-0830]; Mitsubishi Foundation; Yamada Science Foundation; Inoue Foundation for Science; National Research Foundation of South Africa; NRF [2017R1A3A3001362]; KASI [2017-1-830-03]; Israel Science Foundation [541/17]; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science AMP; Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Agencia Estatal de Investigacion; Vicepresidencia i Conselleria d'Innovacio Recerca i Turisme; Conselleria d'Educacio i Universitat del Govern de les Illes Balears; Conselleria d'Educacio Investigacio Cultura i Esport de la Generalitat Valenciana; National Science Centre of Poland; Swiss National Science Foundation (SNSF); Russian Foundation for Basic Research; Russian Science Foundation; European Commission; European Regional Development Funds (ERDF); Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research, Development and Innovation Office Hungary (NKFI); National Research Foundation of Korea; Industry Canada and Province of Ontario through Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, Innovations, and Communications; International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR); Council of Hong Kong; National Natural Science Foundation of China (NSFC); Chinese Academy of Sciences (CAS); Ministry of Science and Technology of China (MOST); Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; RIKEN; MEXT; KAKENHI [JP 17H06362]; EVN [RP029]; European Union's Horizon 2020 research and innovation programme [653477]; ERC [647208]; Netherlands Organization for Scientific Research through NWO VIDI [639.042.612-Nissanke]; NWO TOP [62002444-Nissanke]; VISIR [60.A-9392]; [MOST104-2923-M-008-004-MY5]; [MOST106-2112-M-008-007] ; (1M2H) We thank J. McIver for alerting us to the LVC circular. We thank J. Mulchaey (Carnegie Observatories director), L. Infante (Las Campanas Observatory director), and the entire Las Campanas staff for their extreme dedication, professionalism, and excitement, all of which were critical in the discovery of the first gravitational-wave optical counterpart and its host galaxy as well as the observations used in this study. We thank I. Thompson and the Carnegie Observatory Time Allocation Committee for approving the Swope Supernova Survey and scheduling our program. We thank the University of Copenhagen, DARK Cosmology Centre, and the Niels Bohr International Academy for hosting D.A.C., R.J.F., A.M.B., E.R., and M.R.S. during the discovery of GW170817/SSS17a. R.J.F., A.M.B., and E.R. were participating in the Kavli Summer Program in Astrophysics, "Astrophysics with gravitational wave detections." This program was supported by the the Kavli Foundation, Danish National Research Foundation, the Niels Bohr International Academy, and the DARK Cosmology Centre. The UCSC group is supported in part by NSF grant AST-1518052, the Gordon & Betty Moore Foundation, the Heising-Simons Foundation, generous donations from many individuals through a UCSC Giving Day grant, and from fellowships from the Alfred P. Sloan Foundation (R.J.F.), the David and Lucile Packard Foundation (R.J.F. and E.R.) and the Niels Bohr Professorship from the DNRF (E.R.). AMB acknowledges support from a UCMEXUS-CONACYT Doctoral Fellowship. Support for this work was provided by NASA through Hubble Fellowship grants HST-HF-51348.001 (B.J.S.) and HST-HF-51373.001 (M.R.D.) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This paper includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.r (AGILE) The AGILE Team thanks the ASI management, the technical staff at the ASI Malindi ground station, the technical support team at the ASI Space Science Data Center, and the Fucino AGILE Mission Operation Center. AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant No. I/028/12/2. We also thank INAF, Italian Institute of Astrophysics, and ASI, Italian Space Agency.r (ANTARES) The ANTARES Collaboration acknowledges the financial support of: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cite d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO): Plan Estatal de Investigacion (refs.; r r FPA2015-65150-C3-1-P, -2-P and -3-P; MINECO/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.r (AST3) The AST3 project is supported by the National Basic Research Program (973 Program) of China (Grant Nos. 2013CB834901, 2013CB834900, 2013CB834903), and the Chinese Polar Environment Comprehensive Investigation & Assessment Program (grant No. CHINARE2016-02-03-05). The construction of the AST3 telescopes has received fundings from Tsinghua University, Nanjing University, Beijing Normal University, University of New South Wales, and Texas A&M University, the Australian Antarctic Division, and the National Collaborative Research Infrastructure Strategy (NCRIS) of Australia. It has also received funding from Chinese Academy of Sciences through the Center for Astronomical Mega-Science and National Astronomical Observatory of China (NAOC).r (Auger) The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina-Comision Nacional de Energia Atomica; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia-the Australian Research Council; Brazil-Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Sao Paulo Research Foundation (FAPESP) grant Nos. 2010/07359-6 and 1999/05404-3; Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (MCTIC); Czech Republic-grant Nos. MSMT CR LG15014, LO1305, LM2015038 and CZ.02.1.01/0.0/0.0/16_013/0001402; France-Centre de Calcul IN2P3/CNRS; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS); Departement Sciences de l'Univers (SDU-INSU/CNRS); Institut Lagrange de Paris (ILP) grant No. LABEX ANR-10-LABX-63 within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02; Germany-Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz Alliance for Astroparticle Physics (HAP); Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen; Ministerium fur Wissenschaft, Forschung und Kunst des Landes Baden-Wurttemberg; Italy-Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR); CETEMPS Center of Excellence; Ministero degli Affari Esteri (MAE); Mexico-Consejo Nacional de Ciencia y Tecnologia (CONACYT) No.; r r 167733; Universidad Nacional Autonoma de Mexico (UNAM); PAPIIT DGAPA-UNAM; The Netherlands - Ministerie van Onderwijs, Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Poland-National Centre for Research and Development, grant Nos. ERA-NET-ASPERA/01/11 and ERA-NET-ASPERA/02/11; National Science Centre, grant Nos. 2013/08/M/ST9/00322, 2013/08/M/ST9/00728, and HARMONIA 5-2013/10/M/ST9/00062, UMO-2016/22/M/ST9/00198; Portugal-Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE); Romania-Romanian Authority for Scientific Research ANCS; CNDI-UEFISCDI partnership projects grant Nos. 20/2012 and 194/2012 and PN 16 42 01 02; Slovenia-Slovenian Research Agency; Spain-Comunidad de Madrid; Fondo Europeo de Desarrollo Regional (FEDER) funds; Ministerio de Economia y Competitividad; Xunta de Galicia; European Community 7th Framework Program grant No. FP7-PEOPLE-2012-IEF-328826; USA-Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, and DE-SC0011689; National Science Foundation, grant No.r 0450696; The Grainger Foundation; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; European Union 7th Framework Program, grant No. PIRSES-2009-GA-246806; European Union's Horizon 2020 research and innovation programme (grant No. 646623); and UNESCO.r (Australian Radio) T.M. acknowledges the support of the Australian Research Council through grant FT150100099. S.O. acknowledges the Australian Research Council grant Laureate Fellowship FL15010014. D.L.K. and I.S.B. are additionally supported by NSF grant AST-141242. P.A.B. and the DFN team acknowledge the Australian Research Council for support under their Australian Laureate Fellowship scheme. The Australia Telescope Compact Array is part of the Australia Telescope National Facility, which is funded by the Australian Government for operation as a National Facility managed by CSIRO. This scientific work makes use of the Murchison Radio-astronomy Observatory, operated by CSIRO. We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site. Support for the operation of the MWA is provided by the Australian Government (NCRIS), under a contract to Curtin University administered by Astronomy Australia Limited. We acknowledge the Pawsey Supercomputing Centre, which is supported by the Western Australian and Australian Governments. The Australian SKA Pathfinder is part of the Australia Telescope National Facility, which is managed by CSIRO. Operation of ASKAP is funded by the Australian Government with support from the National Collaborative Research Infrastructure Strategy. ASKAP uses the resources of the Pawsey Supercomputing Centre. Establishment of ASKAP, the Murchison Radio-astronomy Observatory and the Pawsey Supercomputing Centre are initiatives of the Australian Government, with support from the Government of Western Australia and the Science and Industry Endowment Fund. Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics in 3D (ASTRO 3D) through project number CE170100013.r (Berger Time-Domain Group) The Berger Time-Domain Group at Harvard is supported in part by the NSF through grants AST-1411763 and AST-1714498, and by NASA through grants NNX15AE50G and NNX16AC22G.r (Bootes) A.J.C.T.; r r acknowledges support from the Spanish Ministry Project AYA 2015-71718-R (including FEDER funds) and Junta de Andalucia Proyecto de Excelencia TIC-2839. I.H.P. acknowledges the support of the National Research Foundation (NRF-2015R1A2A1A01006870). S.J. acknowledges the support of Korea Basic Science Research Program (NRF2014R1A6A3A03057484 and NRF-2015R1D1A4A01020961). The BOOTES-5/JGT observations were carried out at Observatorio Astronomico Nacional in San Pedro Martir (OAN-SPM, Mexico), operated by Instituto de Astronomia, UNAM and with support from Consejo Nacional de Ciencia y Tecnologia (Mexico) through the Laboratorios Nacionales Program (Mexico), Instituto de Astrofisica de Andalucia (IAA-CSIC, Spain) and Sungkyunkwan University (SKKU, South Korea). We also thank the staff of OAN-SPM for their support in carrying out the observations.r (CAASTRO) Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. The national facility capability for SkyMapper has been funded through ARC LIEF grant LE130100104 from the Australian Research Council, awarded to the University of Sydney, the Australian National University, Swinburne University of Technology, the University of Queensland, the University of Western Australia, the University of Melbourne, Curtin University of Technology, Monash University, and the Australian Astronomical Observatory. SkyMapper is owned and operated by The Australian National University's Research School of Astronomy and Astrophysics.r (CALET) The CALET team gratefully acknowledges support from NASA, ASI, JAXA, and MEXT KAKENHI grant numbers JP 17H06362, JP26220708, and JP17H02901.r (Chandra/McGill) This work was supported in part by Chandra Award Number GO7-18033X, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration (NASA) under contract NAS8-03060. D.H., M.N., and J.J.R. acknowledge support from a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and a Fonds de recherche du Quebec-Nature et Technologies (FRQNT) Nouveaux Chercheurs Grant. P.A.E. acknowledges UKSA support. J.A.K. acknowledges the support of NASA grant NAS5-00136. D.H. also acknowledges support from the Canadian Institute for Advanced Research (CIFAR).r (CZTI/AstroSat) CZTI is built by a TIFR-led consortium of institutes across India, including VSSC, ISAC, IUCAA, SAC, and PRL. The Indian Space Research Organisation funded, managed, and facilitated the project.r (DLT40) D.J.S. acknowledges support for the DLT40 program from NSF grant AST-1517649.r (EuroVLBI) The European VLBI Network is a joint facility of independent European, African, Asian, and North American radio astronomy institutes. Scientific results from data presented in this publication are derived from the following EVN project code: RP029. e-MERLIN is a National Facility operated by the University of Manchester at Jodrell Bank Observatory on behalf of STFC. The collaboration between LIGO/Virgo and EVN/e-MERLIN is part of a project that has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No. 653477.r (ePESSTO) We acknowledge ESO programs 199.D-0143 and 099.D-0376. PS1 and ATLAS are supported by NASA grants NNX08AR22G, NNX12AR65G, NNX14AM74G, and NNX12AR55G. We acknowledge the Leibniz-Prize to Prof. G.; r r Hasinger (DFG grant HA 1850/28-1), EU/FP7-ERC grants 291222, 615929, 647208, 725161, STFC grants ST/P000312/1 and ERF ST/M005348/1, ST/P000495/1. Marie Sklodowska-Curie grant No 702538. Polish NCN grant OPUS 2015/17/B/ST9/03167, Knut and Alice Wallenberg Foundation. PRIN-INAF 2014. David and Ellen Lee Prize Postdoctoral Fellowship at the California Institute of Technology. Alexander von Humboldt Sofja Kovalevskaja Award. Royal Society-Science Foundation Ireland Vilho, Yrjo and Kalle Vaisala Foundation. FONDECYT grant number 3160504. US NSF grant AST-1311862. Swedish Research Council and the Swedish Space Board. The Quantum Universe I-Core program, the ISF, BSF, and Kimmel award. IRC grant GOIPG/2017/1525. Australian Research Council CAASTRO CE110001020 and grant FT160100028. We acknowledge Millennium Science Initiative grant IC120009.r (Fermi-GBM) B.C., V.C., A.G., and W.S.P. gratefully acknowledge NASA funding through contract NNM13AA43C. M.S.B., R.H., P.J., C.A.M., S.P., R.D.P., M.S., and P.V. gratefully acknowledge NASA funding from cooperative agreement NNM11AA01A. E.B. is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASA. D.K., C.A.W.H., C.M.H., and J.R. gratefully acknowledge NASA funding through the Fermi-GBM project. Support for the German contribution to GBM was provided by the Bundesministerium fur Bildung und Forschung (BMBF) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) under contract number 50 QV 0301. A.v.K. was supported by the Bundesministeriums fur Wirtschaft und Technologie (BMWi) through DLR grant 50 OG 1101. S.M.B. acknowledges support from Science Foundation Ireland under grant 12/IP/1288.r (Fermi-LAT) The Fermi-LAT Collaboration acknowledges support for LAT development, operation, and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. This work performed in part under DOE Contract DE-AC02-76SF00515.r (FRBSG) S.L.L. is supported by NSF grant PHY-1607291 (LIU). Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.r (GRAWITA) We acknowledge INAF for supporting the project "Gravitational Wave Astronomy with the first detections of adLIGO and adVIRGO experiments-GRAWITA" PI: E. Brocato. Observations are made with ESO Telescopes at the Paranal Observatory under programmes ID 099.D-0382 (PI: E. Pian), 099.D-0622 (PI: P. D'Avanzo), 099.D-0191 (PI: A. Grado), 099.D-0116 (PI: S. Covino) and with the REM telescope at the ESO La Silla Observatory under program ID 35020 (PI: S. Campana). We thank the ESO operation staff for excellent support of this program. The Sardinia Radio Telescope (SRT) is funded by the Department of University and Research (MIUR), the Italian Space Agency (ASI), and the Autonomous Region of Sardinia (RAS) and is operated as National Facility by the National Institute for Astrophysics (INAF). Z.J. is supported by the External Cooperation Program of BIC (number 114332KYSB20160007). J.M.; r r is supported by the Hundred Talent Program, the Major Program of the Chinese Academy of Sciences (KJZD-EW-M06), the National Natural Science Foundation of China 11673062, and the Oversea Talent Program of Yunnan Province. R.L.C. Starling, K.W., A.B.H., N.R.T., and C.G.M. are supported by the STFC (Science and Technology Facilities Council). D.K., acknowledges the financial support from the Slovenian Research Agency (P1-0188). S.K. and A.N.G. acknowledge support by grant DFG Kl 766/16-3. D.G. acknowledges the financial support of the UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). K.T. was supported by JSPS grant 15H05437 and by a JST Consortia grant.r (GROND) Part of the funding for GROND was generously granted from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). "We acknowledge the excellent help in obtaining GROND data from Angela Hempel, Markus Rabus and Regis Lachaume on La Silla."r (GROWTH, JAGWAR, Caltech-NRAO, TTU-NRAO, and NuSTAR) This work was supported by the GROWTH (Global Relay of Observatories Watching Transients Happen) project funded by the National Science Foundation under PIRE grant No. 1545949. GROWTH is a collaborative project among California Institute of Technology (USA), University of Maryland College Park (USA), University of Wisconsin-Milwaukee (USA), Texas Tech University (USA), San Diego State University (USA), Los Alamos National Laboratory (USA), Tokyo Institute of Technology (Japan), National Central University (Taiwan), Indian Institute of Astrophysics (India), Inter-University Center for Astronomy and Astrophysics (India), Weizmann Institute of Science (Israel), The Oskar Klein Centre at Stockholm University (Sweden), Humboldt University (Germany), Liverpool John Moores University (UK). A.H. acknowledges support by the I-Core Program of the Planning and Budgeting Committee and the Israel Science Foundation. T.M. acknowledges the support of the Australian Research Council through grant FT150100099. Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Australian Government for operation as a National Facility managed by CSIRO. D.L.K. is additionally supported by NSF grant AST-1412421. A.A.M. is funded by the Large Synoptic Survey Telescope Corporation in support of the Data Science Fellowship Program. P.C.Y., C.C.N., and W.H.I. thank the support from grants MOST104-2923-M-008-004-MY5 and MOST106-2112-M-008-007. A.C. acknowledges support from the National Science Foundation CAREER award 1455090, "CAREER: Radio and gravitational-wave emission from the largest explosions since the Big Bang." T.P. acknowledges the support of Advanced ERC grant TReX. B.E.C. thanks SMARTS 1.3 m Queue Manager Bryndis Cruz for prompt scheduling of the SMARTS observations. Basic research in radio astronomy at the Naval Research Laboratory (NRL) is funded by 6.1 Base funding. Construction and installation of VLITE was supported by NRL Sustainment Restoration and Maintenance funding. K.P.M.'s research is supported by the Oxford Centre for Astrophysical Surveys, which is funded through the Hintze Family Charitable Foundation. J.S. and A.G. are grateful for support from the Knut and Alice Wallenberg Foundation. GREAT is funded by the Swedish Research Council (V.R.). E.O.O.; r r is grateful for the support by grants from the Israel Science Foundation, Minerva, Israeli ministry of Science, the US-Israel Binational Science Foundation, and the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation. We thank the staff of the GMRT that made these observations possible. The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. AYQH was supported by a National Science Foundation Graduate Research Fellowship under grant No. DGE-1144469. S.R. has been supported by the Swedish Research Council (VR) under grant number 2016 03657 3, by the Swedish National Space Board under grant number Dnr. 107/16 and by the research environment grant "Gravitational Radiation and Electromagnetic Astrophysical Transients (GREAT)" funded by the Swedish Research council (V.R.) under Dnr. 2016-06012.r We acknowledge the support of the Science and Engineering Research Board, Department of Science and Technology, India and the Indo-US Science and Technology Foundation for the GROWTH-India project.r (HAWC) We acknowledge the support from: the US National Science Foundation (NSF); the US Department of Energy Office of High-Energy Physics; the Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico (grants 271051, 232656, 167281, 260378, 179588, 239762, 254964, 271737, 258865, 243290); Red HAWC, Mexico; DGAPA-UNAM (grants RG100414, IN111315, IN111716-3, IA102715, 109916); VIEP-BUAP; the University of Wisconsin Alumni Research Foundation; the Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory; Polish Science Centre grant DEC-2014/13/B/ST9/945. We acknowledge the support of the Science and Engineering Research Board, Department of Science and Technology, India and the Indo-US Science and Technology Foundation for the GROWTH-India project.r (H.E.S.S.) The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H.E.S.S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the German Research Foundation (DFG), the Alexander von Humboldt Foundation, the Deutsche Forschungsgemeinschaft, the French Ministry for Research, the CNRS-IN2P3 and the Astroparticle Interdisciplinary Programme of the CNRS, the U.K. Science and Technology Facilities Council (STFC), the IPNP of the Charles University, the Czech Science Foundation, the Polish National Science Centre, the South African Department of Science and Technology and National Research Foundation, the University of Namibia, the National Commission on Research, Science and Technology of Namibia (NCRST), the Innsbruck University, the Austrian Science Fund (FWF), and the Austrian Federal Ministry for Science, Research and Economy, the University of Adelaide and the Australian Research Council, the Japan Society for the Promotion of Science and by the University of Amsterdam. We appreciate the excellent work of the technical support staff in Berlin, Durham, Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and in Namibia in the construction and operation of the equipment. This work benefited from services provided by the H.E.S.S. Virtual Organisation, supported by the national resource providers of the EGI Federation.; r r r (Insight-HXMT) The Insight-HXMT team acknowledges the support from the China National Space Administration (CNSA), the Chinese Academy of Sciences (CAS; grant No. XDB23040400), and the Ministry of Science and Technology of China (MOST; grant No. 2016YFA0400800).r (IceCube) We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Villum Fonden, Danish National Research Foundation (DNRF), Denmark.r (IKI-GW) A.S.P., A.A.V., E.D.M., and P.Y.u.M. acknowledge the support from the Russian Science Foundation (grant 15-1230015). V.A.K., A.V.K., and I.V.R. acknowledge the Science and Education Ministry of Kazakhstan (grant No. 0075/GF4). R.I. is grateful to the grant RUSTAVELI FR/379/6-300/14 for partial support. We acknowledge the excellent help in obtaining Chilescope data from Sergei Pogrebsskiy and Ivan Rubzov.r (INTEGRAL) This work is based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), and with the participation of Russia and the USA. The INTEGRAL SPI project has been completed under the responsibility and leadership of CNES. The SPI-ACS detector system has been provided by MPE Garching/Germany. The SPI team is grateful to ASI, CEA, CNES, DLR, ESA, INTA, NASA, and OSTC for their support. The Italian INTEGRAL team acknowledges the support of ASI/INAF agreement No. 2013-025-R.1. R.D. and A.v.K. acknowledge the German INTEGRAL support through DLR grant 50 OG 1101. A.L. and R.S. acknowledge the support from the Russian Science Foundation (grant 14-22-00271). A.D. is funded by Spanish MINECO/FEDER grant ESP2015-65712-C5-1-R.r (IPN) K.H. is grateful for support under NASA grant NNX15AE60G. R.L.A. and D.D.F. are grateful for support under RFBR grant 16-29-13009-ofi-m.; r r r (J-GEM) MEXT KAKENHI (JP17H06363, JP15H00788, JP24103003, JP10147214, JP10147207), JSPS KAKENHI (JP16H02183, JP15H02075, JP15H02069, JP26800103, JP25800103), Inter-University Cooperation Program of the MEXT, the NINS program for cross-disciplinary science study, the Toyota Foundation (D11-R-0830), the Mitsubishi Foundation, the Yamada Science Foundation, Inoue Foundation for Science, the National Research Foundation of South Africa.r (KU) The Korea-Uzbekistan Consortium team acknowledges the support from the NRF grant No. 2017R1A3A3001362, and the KASI grant 2017-1-830-03. This research has made use of the KMTNet system operated by KASI.r (Las Cumbres) Support for I. A. and J.B. was provided by NASA through the Einstein Fellowship Program, grants PF6-170148 and PF7-180162, respectively. D.A.H., C.M., and G.H. are supported by NSF grant AST-1313484. D.P. and D.M acknowledge support by Israel Science Foundation grant 541/17. This work makes use of observations from the LCO network.r (LIGO and Virgo) The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck- Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium.; r r The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigacion, the Vicepresidencia i Conselleria d'Innovacio Recerca i Turisme and the Conselleria d'Educacio i Universitat del Govern de les Illes Balears, the Conselleria d'Educacio Investigacio Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the China National Space Administration (CNSA) and the Chinese Academy of Sciences (CAS), the Ministry of Science and Technology of China (MOST), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. The MAXI team acknowledges the support by JAXA, RIKEN, and MEXT KAKENHI grant number JP 17H06362. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The European VLBI Network is a joint facility of independent European, African, Asian, and North American radio astronomy institutes. Scientific results from data presented in this publication are derived from the following EVN project code: RP029.r e-MERLIN is a National Facility operated by the University of Manchester at Jodrell Bank Observatory on behalf of STFC. The collaboration between LIGO/Virgo and EVN/eMERLIN is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 653477. We thank Britt Griswold (NASA/GSFC) for graphic arts. P.G.J. acknowledges ERC-Consolidator grant No. 647208. We thank the GMRT staff for prompt scheduling of these observations. The GMRT is run by the National Center for Radio Astrophysics of the Tata Institute of Fundamental Research. INAF, Italian Institute of Astrophysics ASI, Italian Space Agency. This work is part of the research program Innovational Research Incentives Scheme (Vernieuwingsimpuls), which is financed by the Netherlands Organization for Scientific Research through the NWO VIDI grant No. 639.042.612-Nissanke and NWO TOP grant No. 62002444-Nissanke.; r r We thank ESO for granting full access to all the LVC MoU partners of the observations of GW170817 obtained with NACO and VISIR under the Observatory program 60.A-9392.
WOS: 000453294300002 ; A search for new phenomena in events with two same- charge leptons or three leptons and jets identi fi ed as originating from b - quarks in a data sample of 36.1 fb of pp collisions at ps = 13TeV recorded by the ATLAS detector at the Large Hadron Collider is reported. No signi fi cant excess is found and limits are set on vector- like quark, fourtop- quark, and same- sign top- quark pair production. The observed ( expected) 95% CL mass limits for a vector- like T - and B - quark singlet are mT > 0 : 98 ( 0 : 99) TeV and mB > 1 : 00 ( 1 : 01) TeV respectively. Limits on the production of the vector- like T5=3 - quark are also derived considering both pair and single production; in the former case the lower limit on the mass of the T5=3 - quark is ( expected to be) 1.19 ( 1.21) TeV. The Standard Model fourtop- quark production cross- section upper limit is ( expected to be) 69 ( 29) fb. Constraints are also set on exotic four- top- quark production models. Finally, limits are set on samesign top- quark pair production. The upper limit on uu ! tt production is ( expected to be) 89 ( 59) fb for a mediator mass of 1TeV, and a dark- matter interpretation is also derived, excluding a mediator of 3TeV with a dark- sector coupling of 1.0 and a coupling to ordinary matter above 0.31. ; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; CFI, CanadaCanada Foundation for Innovation; NRC, Canada; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia; NRC KI; Russian FederationRussian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Geneva, Switzerland; SNSF, Geneva, Switzerland; Cantons of Bern and Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF; Canada Council; CANARIE; CRCAustralian GovernmentDepartment of Industry, Innovation and ScienceCooperative Research Centres (CRC) Programme; Compute Canada; FQRNTFQRNT; Ontario Innovation Trust, Canada; EPLANET; ERCEuropean Research Council (ERC); ERDF, FP7, Horizon 2020; Marie Sk lodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, FranceFrench National Research Agency (ANR); DFG and AvH Foundation, Germany; EU-ESFEuropean Union (EU); Greek NSRFGreek Ministry of Development-GSRT; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society and Leverhulme Trust, United Kingdom; CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada); NDGF (Denmark, Norway, Sweden); CC-IN2P3 (France); KIT/GridKA (Germany); INFN-CNAF (Italy); NL-T1 (Netherlands)Netherlands Government; PIC (Spain); ASGC (Taiwan); RAL (U.K.); BNL (U.S.A.) ; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sk lodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.; The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [65].
WOS: 000423212200001 ; The inclusive cross-section for the associated production of a W boson and top quark is measured using data from proton-proton collisions at root s = 13TeV. The dataset corresponds to an integrated luminosity of 3.2 fb(-1), and was collected in 2015 by the ATLAS detector at the Large Hadron Collider at CERN. Events are selected requiring two opposite sign isolated leptons and at least one jet; they are separated into signal and control regions based on their jet multiplicity and the number of jets that are identified as containing b hadrons. The Wt signal is then separated from the t ($) over bar background using boosted decision tree discriminants in two regions. The cross-section is extracted by fitting templates to the data distributions, and is measured to be sigma(Wt) = 94 +/- 10 (stat:)(-22)(+28) (syst:) +/- 2 (lumi:) pb. The measured value is in good agreement with the SM prediction of sigma(theory) = 71: 7 +/- 1: 8 (scale) +/- 3: 4 (PDF) pb [1]. ; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN, Chile; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF,Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET, European UnionEuropean Union (EU); ERC, European UnionEuropean Union (EU)European Research Council (ERC); FP7, European UnionEuropean Union (EU); Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissement d'Avenir Labex, FranceFrench National Research Agency (ANR); Investissement d'Avenir Idex, FranceFrench National Research Agency (ANR); ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; EU-ESFEuropean Union (EU); Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; BRF, Norway; CERCA Programme Generalitat de Catalunya, Spain; Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust ; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.
WOS: 000427543500001 ; A search is conducted for new resonances decaying into a WW or WZ boson pair, where one W boson decays leptonically and the other W or Z boson decays hadronically. It is based on proton-proton collision data with an integrated luminosity of 36.1 fb(-1) collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of root s = 13 TeV in 2015 and 2016. The search is sensitive to diboson resonance production via vector-boson fusion as well as quark-antiquark annihilation and gluon-gluon fusion mechanisms. No significant excess of events is observed with respect to the Standard Model backgrounds. Several benchmark models are used to interpret the results. Limits on the production cross section are set for a new narrow scalar resonance, a new heavy vector-boson and a spin-2 Kaluza-Klein graviton. ; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CASChinese Academy of Sciences; MOST; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CRMinistry of Education, Youth & Sports - Czech Republic; MPO CR; VSC CR, Czech RepublicCzech Republic Government; DNRF; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRSCentre National de la Recherche Scientifique (CNRS); CEA-DRF/IRFU, France; SRNSF, Georgia; BMBFFederal Ministry of Education & Research (BMBF); HGF; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISFIsrael Science Foundation; I-CORE; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXTMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSWMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRSSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC; Wallenberg Foundation, Sweden; SERI; SNSFSwiss National Science Foundation (SNSF); Cantons of Bern and Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOEUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF; Canada Council; CANARIE; CRC,; Compute Canada; FQRNTFQRNT; Ontario Innovation Trust, Canada; EPLANET; ERCEuropean Research Council (ERC); ERDFEuropean Union (EU); FP7, Horizon; Marie Sklodowska-Curie Actions; European UnionEuropean Union (EU); Investissements d'Avenir Labex and IdexFrench National Research Agency (ANR); ANRFrench National Research Agency (ANR); Region Auvergne and Fondation Partager le Savoir, FranceRegion Auvergne-Rhone-Alpes; DFGGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; Herakleitos, Thales and Aristeia programmes - EU-ESF; Greek NSRFGreek Ministry of Development-GSRT; BSFUS-Israel Binational Science Foundation; GIFGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, SpainGeneralitat Valenciana; Royal SocietyRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust ; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.
The Ministry of Science and Innovation and the Consolider-Ingenio 2010 Program and the European Union community Marie Curie Fellowship Contract No. 302103. ; Aaltonen, T., Abazov, V.M., Abbott, B., Acharya, B.S., Adams, M., Adams, T., Agnew, J.P., Alexeev, G.D., Alkhazov, G., Alton, A., Amerio, S., Amidei, D., Anastassov, A., Annovi, A., Antos, J., Apollinari, G., Appel, J.A., Arisawa, T., Artikov, A., Asaadi, J., Ashmanskas, W., Askew, A., Atkins, S., Auerbach, B., Augsten, K., Aurisano, A., Aushev, V., Aushev, Y., Avila, C., Azfar, F., Badaud, F., Badgett, W., Bae, T., Bagby, L., Baldin, B., Bandurin, D.V., Banerjee, S., Barbaro-Galtieri, A., Barberis, E., Baringer, P., Barnes, V.E., Barnett, B.A., Barria, P., Bartlett, J.F., Bartos, P., Bassler, U., Bauce, M., Bazterra, V., Bean, A., Bedeschi, F., Begalli, M., Behari, S., Bellantoni, L., Bellettini, G., Bellinger, J., Benjamin, D., Beretvas, A., Beri, S.B., Bernardi, G., Bernhard, R., Bertram, I., Besançon, M., Beuselinck, R., Bhat, P.C., Bhatia, S., Bhatnagar, V., Bhatti, A., Bland, K.R., Blazey, G., Blessing, S., Bloom, K., Blumenfeld, B., Bocci, A., Bodek, A., Boehnlein, A., Boline, D., Boos, E.E., Borissov, G., Bortoletto, D., Borysova, M., Boudreau, J., Boveia, A., Brandt, A., Brandt, O., Brigliadori, L., Brochmann, M., Brock, R., Bromberg, C., Bross, A., Brown, D., Brucken, E., Bu, X.B., Budagov, J., Budd, H.S., Buehler, M., Buescher, V., Bunichev, V., Burdin, S., Burkett, K., Busetto, G., Bussey, P., Buszello, C.P., Butti, P., Buzatu, A., Calamba, A., Camacho-Pérez, E., Camarda, S., Campanelli, M., Canelli, F., Carls, B., Carlsmith, D., Carosi, R., Carrillo, S., Casal, B., Casarsa, M., Casey, B.C.K., Castilla-Valdez, H., Castro, A., Catastini, P., Caughron, S., Cauz, D., Cavaliere, V., Cerri, A., Cerrito, L., Chakrabarti, S., Chan, K.M., Chandra, A., Chapon, E., Chen, G., Chen, Y.C., Chertok, M., Chiarelli, G., Chlachidze, G., Cho, K., Cho, S.W., Choi, S., Chokheli, D., Choudhary, B., Cihangir, S., Claes, D., Clark, A., Clarke, C., Clutter, J., ...
WOS: 000446948800005 ; A measurement of the fragmentation functions of jets into charged particles in p Pb collisions and pp collisions is presented. The analysis utilizes 28 nb(-1) of p Pb data and 26 pb(-1) of pp data, both at root(TN)-T-s= 5.02 TeV, collected in 2013 and 2015, respectively, with the ATLAS detector at the LHC. The measurement is reported in the centre-of-mass frame of the nucleon-nucleon system for jets in the rapidity range vertical bar y*vertical bar <1.6 and with transverse momentum 45 < p(T) < 260 GeV. Results are presented both as a function of the charged-particle transverse momentum and as a function of the longitudinal momentum fraction of the particle with respect to the jet. The pp fragmentation functions are compared with results from Monte Carlo event generators and two theoretical models. The ratios of the p +Pb to pp fragmentation functions are found to be consistent with unity. (C) 2018 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. ; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia, Russian FederationRussian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET, European UnionEuropean Union (EU); ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); FP7, European UnionEuropean Union (EU); Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissement d'Avenir Labex, FranceFrench National Research Agency (ANR); Investissement d'Avenir Idex, FranceFrench National Research Agency (ANR); ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Spain; Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust ; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [54].
WOS: 000407598200001 ; A measurement of the splitting scales occuring in the k(t) jet-clustering algorithm is presented for final states containing a Z boson. The measurement is done using 20.2 fb(-1) of proton-proton collision data collected at a centre-of-mass energy of root s = 8TeV by the ATLAS experiment at the LHC in 2012. The measurement is based on charged-particle track information, which is measured with excellent precision in the p(T) region relevant for the transition between the perturbative and the non-perturbative regimes. The data distributions are corrected for detector effects, and are found to deviate from state-of-the-art predictions in various regions of the observables. ; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, China; Hong Kong SAR, China; ISF, IsraelIsrael Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Canton of Bern, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET; ERCEuropean Research Council (ERC); ERDFEuropean Union (EU); Marie Sklodowska-Curie Actions; European UnionEuropean Union (EU); Investissements d'Avenir Labex and Idex, FranceFrench National Research Agency (ANR); ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; EU-ESFEuropean Union (EU); Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust; Canton of Geneva, Switzerland ; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.
WOS: 000412977500001 ; Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 3.2 fb(-1) collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-k(t) algorithm with radius parameter R = 0.4. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20 0.8) is derived from dijet p(T) balance measurements. For jets of p(T) = 80 GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range vertical bar eta vertical bar > 3.5 and in a narrow slice of 2.2 < vertical bar eta vertical bar < 2.4. ; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia, Russian FederationRussian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET, European UnionEuropean Union (EU); ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); FP7, European UnionEuropean Union (EU); Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissements d'Avenir Labex and Idex, FranceFrench National Research Agency (ANR); ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society , United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust ; We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [42].
WOS: 000400027000001 ; We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb-1. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function of both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%. ; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; FOM, NetherlandsFOM (The Netherlands)Netherlands Government; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia, Russian FederationRussian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Cantons of Bern, Switzerland; Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET, European UnionEuropean Union (EU); ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); FP7, European UnionEuropean Union (EU); Horizon, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissement d'Avenir Labex, FranceFrench National Research Agency (ANR); Investissement Idex, France; ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; FOM, NetherlandsFOM (The Netherlands)Netherlands Government; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia, Russian FederationRussian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Cantons of Bern, Switzerland; Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET, European UnionEuropean Union (EU); ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); FP7, European UnionEuropean Union (EU); Horizon, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissement d'Avenir Labex, FranceFrench National Research Agency (ANR); Investissement Idex, France; ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust; ICREAICREA ; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.
WOS: 000413294200055 ; The production of opposite-charge W-boson pairs in proton-proton collisions at root s = 13 TeV is measured using data corresponding to 3.16 fb(-1) of integrated luminosity collected by the ATLAS detector at the CERN Large Hadron Collider in 2015. Candidate W-boson pairs are selected by identifying their leptonic decays into an electron, a muon and neutrinos. Events with reconstructed jets are not included in the candidate event sample. The cross-section measurement is performed in a fiducial phase space close to the experimental acceptance and is compared to theoretical predictions. Agreement is found between the measurement and the most accurate calculations available. (C) 2017 The Author. Published by Elsevier B.V. ; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COL-CIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia, Russian FederationRussian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI Canton of Bern, Switzerland; SNSF Canton of Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET, European UnionEuropean Union (EU); ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); Horizon and Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; Herakleitos; Thales; Aristeia programmes; EU-ESFEuropean Union (EU); Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust; Investissements d'Avenir Labex and Idex, FranceFrench National Research Agency (ANR); ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France ; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.
WOS: 000394374500003 ; Same-and opposite-sign charge asymmetries are measured in lepton+ jets t (t) over bar events in which a b-hadron decays semileptonically to a soft muon, using data corresponding to an integrated luminosity of 20.3 fb(-1) from proton-proton collisions at a centre-of-mass energy of root s = 8TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. The charge asymmetries are based on the charge of the lepton from the top-quark decay and the charge of the soft muon from the semileptonic decay of a b -hadron and are measured in a fi ducial region corresponding to the experimental acceptance. Four CP asymmetries (one mixing and three direct) are measured and are found to be compatible with zero and consistent with the Standard Model. ; ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; FOM, NetherlandsFOM (The Netherlands)Netherlands Government; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia, Russian FederationRussian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET, European UnionEuropean Union (EU); ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); FP7, European UnionEuropean Union (EU); Horizon, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissements d'Avenir Labex and Idex, FranceFrench National Research Agency (ANR); ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; Herakleitos, Thales; Aristeia programmes; EU-ESFEuropean Union (EU); Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Spain; Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust; Science and Technology Facilities CouncilScience & Technology Facilities Council (STFC) [GRIDPP, ST/L000997/1, ST/L006162/1, ST/M000753/1, ST/K001329/1 ATLAS, ST/N000307/1, ST/J005533/1, ST/J004804/1, 1366825, ST/L003449/1, ST/K001329/1, ATLAS, 1246501]; ICREAICREA ; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.