Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al. ; We realize a device allowing for tunable and switchable coupling between two frequency-degenerate superconducting resonators mediated by an artificial atom. For the latter, we utilize a persistent current flux qubit. We characterize the tunable and switchable coupling in the frequency and time domains and find that the coupling between the relevant modes can be varied in a controlled way. Specifically, the coupling can be tuned by adjusting the flux through the qubit loop or by controlling the qubit population via a microwave drive. Our measurements allow us to find parameter regimes for optimal coupler performance and quantify the tunability range. ; This work is supported by the German Research Foundation through SFB 631, Spanish MINECO FIS2012-36673-C03-02; UPV/EHU UFI 11/55; Basque Government IT472-10; CCQED, PROMISCE, and SCALEQIT EU projects. B.P. acknowledges support from the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319. ; Peer reviewed
10 pags., 5 figs. ; We realize tunable coupling between two superconducting transmission line resonators. The coupling is mediated by a non-hysteretic rf SQUID acting as a flux-tunable mutual inductance between the resonators. We present a spectroscopic characterization of the device. In particular, we observe couplings g/2π ranging between –320 MHz and 37 MHz. In the case of g 0, the microwave power cross transmission between the two resonators is reduced by almost four orders of magnitude as compared to the case where the coupling is switched on. ; The authors acknowledge support from the German Research Foundation through SFB 631 and FE 1564/1-1; the EU projects CCQED, PROMISCE and SCALEQIT; the doctorate program ExQM of the Elite Network of Bavaria; the Spanish MINECO projects FIS2012-33022, FIS2012-36673-C03-02, and FIS2015-69983-P; the CAM Research Network QUITEMAD+; the Basque Government IT472-10 and UPV/EHU UFI 11/55.