Background Non-fatal outcomes of disease and injury increasingly detract from the ability of the world's population to live in full health, a trend largely attributable to an epidemiological transition in many countries from causes affecting children, to non-communicable diseases (NCDs) more common in adults. For the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015), we estimated the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015. Methods We estimated incidence and prevalence by age, sex, cause, year, and geography with a wide range of updated and standardised analytical procedures. Improvements from GBD 2013 included the addition of new data sources, updates to literature reviews for 85 causes, and the identification and inclusion of additional studies published up to November, 2015, to expand the database used for estimation of non-fatal outcomes to 60 900 unique data sources. Prevalence and incidence by cause and sequelae were determined with DisMod-MR 2.1, an improved version of the DisMod-MR Bayesian meta-regression tool first developed for GBD 2010 and GBD 2013. For some causes, we used alternative modelling strategies where the complexity of the disease was not suited to DisMod-MR 2.1 or where incidence and prevalence needed to be determined from other data. For GBD 2015 we created a summary indicator that combines measures of income per capita, educational attainment, and fertility (the Socio-demographic Index [SDI]) and used it to compare observed patterns of health loss to the expected pattern for countries or locations with similar SDI scores. Findings We generated 9.3 billion estimates from the various combinations of prevalence, incidence, and YLDs for causes, sequelae, and impairments by age, sex, geography, and year. In 2015, two causes had acute incidences in excess of 1 billion: upper respiratory infections (17.2 billion, 95% uncertainty interval [UI] 15.4-19.2 billion) and diarrhoeal diseases (2.39 billion, 2.30-2.50 billion). Eight causes of chronic disease and injury each affected more than 10% of the world's population in 2015: permanent caries, tension-type headache, iron-deficiency anaemia, age-related and other hearing loss, migraine, genital herpes, refraction and accommodation disorders, and ascariasis. The impairment that affected the greatest number of people in 2015 was anaemia, with 2.36 billion (2.35-2.37 billion) individuals affected. The second and third leading impairments by number of individuals affected were hearing loss and vision loss, respectively. Between 2005 and 2015, there was little change in the leading causes of years lived with disability (YLDs) on a global basis. NCDs accounted for 18 of the leading 20 causes of age-standardised YLDs on a global scale. Where rates were decreasing, the rate of decrease for YLDs was slower than that of years of life lost (YLLs) for nearly every cause included in our analysis. For low SDI geographies, Group 1 causes typically accounted for 20-30% of total disability, largely attributable to nutritional deficiencies, malaria, neglected tropical diseases, HIV/AIDS, and tuberculosis. Lower back and neck pain was the leading global cause of disability in 2015 in most countries. The leading cause was sense organ disorders in 22 countries in Asia and Africa and one in central Latin America; diabetes in four countries in Oceania; HIV/AIDS in three southern sub-Saharan African countries; collective violence and legal intervention in two north African and Middle Eastern countries; iron-deficiency anaemia in Somalia and Venezuela; depression in Uganda; onchoceriasis in Liberia; and other neglected tropical diseases in the Democratic Republic of the Congo. Interpretation Ageing of the world's population is increasing the number of people living with sequelae of diseases and injuries. Shifts in the epidemiological profile driven by socioeconomic change also contribute to the continued increase in years lived with disability (YLDs) as well as the rate of increase in YLDs. Despite limitations imposed by gaps in data availability and the variable quality of the data available, the standardised and comprehensive approach of the GBD study provides opportunities to examine broad trends, compare those trends between countries or subnational geographies, benchmark against locations at similar stages of development, and gauge the strength or weakness of the estimates available.
Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97.1 (95% UI 95.8-98.1) in Iceland, followed by 96.6 (94.9-97.9) in Norway and 96.1 (94.5-97.3) in the Netherlands, to values as low as 18.6 (13.1-24.4) in the Central African Republic, 19.0 (14.3-23.7) in Somalia, and 23.4 (20.2-26.8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91.5 (89.1-936) in Beijing to 48.0 (43.4-53.2) in Tibet (a 43.5-point difference), while India saw a 30.8-point disparity, from 64.8 (59.6-68.8) in Goa to 34.0 (30.3-38.1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4.8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20.9-point to 17.0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17.2-point to 20.4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view and subsequent provision of quality health care for all populations. ; Bill & Melinda Gates Foundation. Barbora de Courten is supported by a National Heart Foundation Future Leader Fellowship (100864). Ai Koyanagi's work is supported by the Miguel Servet contract financed by the CP13/00150 and PI15/00862 projects, integrated into the National R + D + I and funded by the ISCIII —General Branch Evaluation and Promotion of Health Research—and the European Regional Development Fund (ERDF-FEDER). Alberto Ortiz was supported by Spanish Government (Instituto de Salud Carlos III RETIC REDINREN RD16/0019 FEDER funds). Ashish Awasthi acknowledges funding support from Department of Science and Technology, Government of India through INSPIRE Faculty scheme Boris Bikbov has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 703226. Boris Bikbov acknowledges that work related to this paper has been done on the behalf of the GBD Genitourinary Disease Expert Group. Panniyammakal Jeemon acknowledges support from the clinical and public health intermediate fellowship from the Wellcome Trust and Department of Biotechnology, India Alliance (2015–20). Job F M van Boven was supported by the Department of Clinical Pharmacy & Pharmacology of the University Medical Center Groningen, University of Groningen, Netherlands. Olanrewaju Oladimeji is an African Research Fellow hosted by Human Sciences Research Council (HSRC), South Africa and he also has honorary affiliations with Walter Sisulu University (WSU), Eastern Cape, South Africa and School of Public Health, University of Namibia (UNAM), Namibia. He is indeed grateful for support from HSRC, WSU and UNAM. EUI is supported in part by the South African National Research Foundation (NRF UID: 86003). Ulrich Mueller acknowledges funding by the German National Cohort Study grant No 01ER1511/D, Gabrielle B Britton is supported by Secretaría Nacional de Ciencia, Tecnología e Innovación and Sistema Nacional de Investigación de Panamá. Giuseppe Remuzzi acknowledges that the work related to this paper has been done on behalf of the GBD Genitourinary Disease Expert Group. Behzad Heibati would like to acknowledge Air pollution Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. Syed Aljunid acknowledges the National University of Malaysia for providing the approval to participate in this GBD Project. Azeem Majeed and Imperial College London are grateful for support from the Northwest London National Insititute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research & Care. Tambe Ayuk acknowledges the Institute of Medical Research and Medicinal Plant Studies for office space provided. José das Neves was supported in his contribution to this work by a Fellowship from Fundação para a Ciência e a Tecnologia, Portugal (SFRH/BPD/92934/2013). João Fernandes gratefully acknowledges funding from FCT–Fundação para a Ciência e a Tecnologia (grant number UID/Multi/50016/2013). Jan-Walter De Neve was supported by the Alexander von Humboldt Foundation. Kebede Deribe is funded by a Wellcome Trust Intermediate Fellowship in Public Health and Tropical Medicine (201900). Kazem Rahimi was supported by grants from the Oxford Martin School, the NIHR Oxford BRC and the RCUK Global Challenges Research Fund. Laith J Abu-Raddad acknowledges the support of Qatar National Research Fund (NPRP 9-040-3-008) who provided the main funding for generating the data provided to the GBD-IHME effort. Liesl Zuhlke is funded by the national research foundation of South Africa and the Medical Research Council of South Africa. Monica Cortinovis acknowledges that work related to this paper has been done on the behalf of the GBD Genitourinary Disease Expert Group. Chuanhua Yu acknowleges support from the National Natural Science Foundation of China (grant number 81773552 and grant number 81273179) Norberto Perico acknowledges that work related to this paper has been done on behalf of the GBD Genitourinary Disease Expert Group. Charles Shey Wiysonge's work is supported by the South African Medical Research Council and the National Research Foundation of South Africa (grant numbers 106035 and 108571). John J McGrath is supported by grant APP1056929 from the John Cade Fellowship from the National Health and Medical Research Council and the Danish National Research Foundation (Niels Bohr Professorship). Quique Bassat is an ICREA (Catalan Institution for Research and Advanced Studies) research professor at ISGlobal. Richard G White is funded by the UK MRC and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement that is also part of the EDCTP2 programme supported by the European Union (MR/P002404/1), the Bill & Melinda Gates Foundation (TB Modelling and Analysis Consortium: OPP1084276/OPP1135288, CORTIS: OPP1137034/OPP1151915, Vaccines: OPP1160830), and UNITAID (4214-LSHTM-Sept15; PO 8477-0-600). Rafael Tabarés-Seisdedos was supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. Mihajlo Jakovljevic acknowleges contribution from the Serbian Ministry of Education Science and Technological Development of the Republic of Serbia (grant OI 175 014). Shariful Islam is funded by a Senior Fellowship from Institute for Physical Activity and Nutrition, Deakin University and received career transition grants from High Blood Pressure Research Council of Australia. Sonia Saxena is funded by various grants from the NIHR. Stefanos Tyrovolas was supported by the Foundation for Education and European Culture, the Sara Borrell postdoctoral program (reference number CD15/00019 from the Instituto de Salud Carlos III (ISCIII–Spain) and the Fondos Europeo de Desarrollo Regional. Stefanos was awarded with a 6 months visiting fellowship funding at IHME from M-AES (reference no. MV16/00035 from the Instituto de Salud Carlos III). S Vittal Katikreddi was funded by a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the MRC (MC_UU_12017/13 & MC_ UU_12017/15) and the Scottish Government Chief Scientist Office (SPHSU13 & SPHSU15). Traolach S Brugha has received funding from NHS Digital UK to collect data used in this study. The work of Hamid Badali was financially supported by Mazandaran University of Medical Sciences, Sari, Iran. The work of Stefan Lorkowski is funded by the German Federal Ministry of Education and Research (nutriCARD, Grant agreement number 01EA1411A). Mariam Molokhia's research was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. We also thank the countless individuals who have contributed to GBD 2016 in various capacities. ; Peer reviewed
The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. Data for this research was provided by MEASURE Evaluation, funded by the United States Agency for International Development (USAID). Views expressed do not necessarily reflect those of USAID, the US Government, or MEASURE Evaluation. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with licence no. SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law-2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. ; Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing. ; Research reported in this publication was supported by the Bill & Melinda Gates Foundation, the University of Melbourne, Public Health England, the Norwegian Institute of Public Health, St. Jude Children's Research Hospital, the National Institute on Aging of the National Institutes of Health (award P30AG047845), and the National Institute of Mental Health of the National Institutes of Health (award R01MH110163). ; Peer reviewed