An up-to-date review of the scale of the electronic waste problem, the impact of recent legislation, current and future methods for treatment, recycling and disposal, Electronic waste includes such items as TVs, computers, LCD and plasma displays, and mobile phones, as well as a wide range of household, medical and industrial equipment which are simply discarded as new technologies become available. Huge and growing quantities of waste are discarded every year and this waste contains toxic and carcinogenic compounds which can pose a risk to the environment. However, if handled correctly, electronic waste presents a valuable source of secondary raw materials. This book brings together a group of leading experts in the management of electrical and electronic waste to provide an up-to-date review of the scale of the waste problem, the impact of recent legislation such as the Waste Electrical and Electronic Equipment Directive (WEEE) and the "restriction of the use of certain hazardous substances in electrical and electronic equipment" directive (RoHS), and of current and future methods for treatment, recycling and disposal of this waste. The book discusses these latest directives, examines current worldwide legislation and considers the opportunities and threats posed by this form of waste. While the emphasis is on European practice, comparisons with other countries such as the USA, Japan and China are made. The book deals with the full range of waste management issues, including recycling and recovery of materials, design considerations for waste minimisation, and contains a wide variety of illustrative case studies eg: LCD displays. With detailed and comprehensive coverage of the subject matter it also contains an extensive bibliography with each chapter. Key chapters cover areas such as: -electronic waste -materials -EU directives -landfill and incineration -recycling and recovery -'cradle to grave' design considerations -engineering thermoplastics It is essential reading for all involved with electrical and electronic waste management through its comprehensive review of recent EU legislation and the subsequent impact on manufacturers and users of electronic equipment
Zugriffsoptionen:
Die folgenden Links führen aus den jeweiligen lokalen Bibliotheken zum Volltext:
International audience ; Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m 3 ) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m 3 , and from 0.1 to 2 μg C/m 3 , respectively. TC/PM 10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM 2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.
International audience ; Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m 3 ) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m 3 , and from 0.1 to 2 μg C/m 3 , respectively. TC/PM 10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM 2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.
Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and More uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0:4 to 2.8 mu g C/m(3)) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 mu g C/m(3), and from 0.1 to 2 mu g C/m(3), respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites. (C) 2016 The Authors. Published by Elsevier Ltd. ; Peer reviewed
In many large cities of Europe standard air quality limit values of particulate matter (PM) are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air quality plans overestimated? Do the road traffic emissions contribute less than expected to ambient air PM levels in urban areas? Or do we need a more specific metric to evaluate the impact of the above emissions on the levels of urban aerosols? This study shows the results of the interpretation of the 2009 variability of levels of PM, Black Carbon (BC), aerosol number concentration (N) and a number of gaseous pollutants in seven selected urban areas covering road traffic, urban background, urban-industrial, and urban-shipping environments from southern, central and northern Europe. The results showed that variations of PM and N levels do not always reflect the variation of the impact of road traffic emissions on urban aerosols. However, BC levels vary proportionally with those of traffic related gaseous pollutants, such as CO, NO2 and NO. Due to this high correlation, one may suppose that monitoring the levels of these gaseous pollutants would be enough to extrapolate exposure to traffic-derived BC levels. However, the BC/CO, BC/NO2 and BC/NO ratios vary widely among the cities studied, as a function of distance to traffic emissions, vehicle fleet composition and the influence of other emission sources such as biomass burning. Thus, levels of BC should be measured at air quality monitoring sites. During morning traffic rush hours, a narrow variation in the N/BC ratio was evidenced, but a wide variation of this ratio was determined for the noon period. Although in central and northern Europe N and BC levels tend to vary simultaneously, not only during the traffic rush hours but also during the whole day, in urban background stations in southern Europe maximum N levels coinciding with minimum BC levels are recorded at midday in all seasons. These N maxima recorded in southern European urban background environments are attributed to midday nucleation episodes occurring when gaseous pollutants are diluted and maximum insolation and O3 levels occur. The occurrence of SO2 peaks may also contribute to the occurrence of midday nucleation bursts in specific industrial or shipping-influenced areas, although at several central European sites similar levels of SO2 are recorded without yielding nucleation episodes. Accordingly, it is clearly evidenced that N variability in different European urban environments is not equally influenced by the same emission sources and atmospheric processes. We conclude that N variability does not always reflect the impact of road traffic on air quality, whereas BC is a more consistent tracer of such an influence. However, N should be measured since ultrafine particles (<100 nm) may have large impacts on human health. The combination of PM10 and BC monitoring in urban areas potentially constitutes a useful approach for air quality monitoring. BC is mostly governed by vehicle exhaust emissions, while PM10 concentrations at these sites are also governed by non-exhaust particulate emissions resuspended by traffic, by midday atmospheric dilution and by other non-traffic emissions. ; This work was funded by the Spanish Ministry of Science and Innovation (VAMOS CGL2010-19464/CLI; DAURE CGL2007-30502-E/CLI, GRACCIE-CSD2007-00067), Department of Inovation, Science and Enterprise of the Andalusian Autonomous Government (AER-REG-P07-RNM-03125), the Ministry of the Environment and Rural and Marine Affairs, and the 7th FP from the EC project SAPUSS (Marie Curie intra-European Fellowship). The authors acknowledge the Departament de Territori i Sostenibilitat from Generalitat de Catalunya, Gobierno de Canarias and Junta de Andalucia (Spain), DEFRA (UK) and the Swiss Federal Office for the Environment (FOEN) for providing the data.