The 2003 reform of the European Union's (EU) Common Agricultural Policy introduced a decoupled income support for farmers called the Single Farm Payment (SFP). Concerns were raised about possible future land use and production changes and their impact on rural communities. Here, such concerns are considered against the workings of the SFP in three EU Member States. Various quantitative studies that have determined the likely impact of the SFP within the EU and the study countries are reviewed. We present the results of a farm survey conducted in the study countries in which farmers' responses to a decoupling scenario similar to the SFP were sought. We found that little short-term change was proposed in the three, rather di erent, study countries with only 30% of the farmers stating that they would alter their mix of farm activities. Furthermore, less than 30% of all respondents in each country would idle any land under decoupling. Of those who would adopt a new activity, the most popular choices were forestry, woodland and non-food crops.
Chromate conversion treatments have been widely used due to their excellent corrosion resistance properties, however their use is increasingly restricted because of the highly toxic cromatic acid solutions required, with consequent effluent disposal and ecological problems. The elimination of these toxic chemicals is considered a priority within European Union. ; Centro de Investigación y Desarrollo en Tecnología de Pinturas
International audience ; Traditional pig productions systems, relying mainly on local pig breeds and outdoor rearing, have been poorly investigated so far in terms of environmental impacts. The few existing studies did not account for possible sequestration of carbon and emissions consecutive to grazing. Twenty-five farms of Gascon breed in France (FR), 8 with Mora Romagnola breed in Italy (IT), and 15 of Krškopolje breed in Slovenia (SI) were evaluated while accounting for the emissions from pasture intake and the potential for carbon sequestration. Pig production system in SI presented the lowest impacts per kg of live weight, due to better feed conversion ratio caused by indoor production and due to lower impacts of feeds – most diets were based on grains, vegetables, tubers and roots produced on farm. Among the systems, acidification potential (AP) was 13% higher in IT than the average for FR and SI, due to higher dietary crude protein content (+9% than the average), while the eutrophication potential (EP) was 27% higher in FR system than the average, as a result of higher phosphorus content of feeds (+28% than the average). When the potential of carbon sequestration was taken into account, the GWP impact was reduced 4% on average. Conversely, when accounting for the emissions from pasture intake the GWP was increased by 2%, mainly when a high digestible grass was considered. The use of high digestible grass provided lower AP and EP impacts than low digestible grass. The large variability between farms in terms of environmental impacts suggests that the margins for improvement of local breeds' production rely on improvement of feed composition and supply, and origin of feed ingredients. There is a great need for better estimation of digestibility of grasses and of carbon sequestration, in order to reduce the uncertainties associated with the environmental impacts evaluated of outdoor pigs' systems. Funded by European Union's H2020 RIA program (grant agreement no. 634476).
International audience ; Traditional pig productions systems, relying mainly on local pig breeds and outdoor rearing, have been poorly investigated so far in terms of environmental impacts. The few existing studies did not account for possible sequestration of carbon and emissions consecutive to grazing. Twenty-five farms of Gascon breed in France (FR), 8 with Mora Romagnola breed in Italy (IT), and 15 of Krškopolje breed in Slovenia (SI) were evaluated while accounting for the emissions from pasture intake and the potential for carbon sequestration. Pig production system in SI presented the lowest impacts per kg of live weight, due to better feed conversion ratio caused by indoor production and due to lower impacts of feeds – most diets were based on grains, vegetables, tubers and roots produced on farm. Among the systems, acidification potential (AP) was 13% higher in IT than the average for FR and SI, due to higher dietary crude protein content (+9% than the average), while the eutrophication potential (EP) was 27% higher in FR system than the average, as a result of higher phosphorus content of feeds (+28% than the average). When the potential of carbon sequestration was taken into account, the GWP impact was reduced 4% on average. Conversely, when accounting for the emissions from pasture intake the GWP was increased by 2%, mainly when a high digestible grass was considered. The use of high digestible grass provided lower AP and EP impacts than low digestible grass. The large variability between farms in terms of environmental impacts suggests that the margins for improvement of local breeds' production rely on improvement of feed composition and supply, and origin of feed ingredients. There is a great need for better estimation of digestibility of grasses and of carbon sequestration, in order to reduce the uncertainties associated with the environmental impacts evaluated of outdoor pigs' systems. Funded by European Union's H2020 RIA program (grant agreement no. 634476).
Traditional pig productions systems, relying mainly on local pig breeds and outdoor rearing, have been poorly investigated so far in terms of environmental impacts. The few existing studies did not account for possible sequestration of carbon and emissions consecutive to grazing. Twentyfive farms of Gascon breed in France (FR), 8 with Mora Romagnola breed in Italy (IT), and 15 of Krškopolje breed in Slovenia (SI) were evaluated while accounting for the emissions from pasture intake and the potential for carbon sequestration. Pig production system in SI presented the lowest impacts per kg of live weight, due to better feed conversion ratio caused by indoor production and due to lower impacts of feeds – most diets were based on grains, vegetables, tubers and roots produced on farm. Among the systems, acidification potential (AP) was 13% higher in IT than the average for FR and SI, due to higher dietary crude protein content (+9% than the average), while the eutrophication potential (EP) was 27% higher in FR system than the average, as a result of higher phosphorus content of feeds (+28% than the average). When the potential of carbon sequestration was taken into account, the GWP impact was reduced 4% on average. Conversely, when accounting for the emissions from pasture intake the GWP was increased by 2%, mainly when a high digestible grass was considered. The use of high digestible grass provided lower AP and EP impacts than low digestible grass. The large variability between farms in terms of environmental impacts suggests that the margins for improvement of local breeds' production rely on improvement of feed composition and supply, and origin of feed ingredients. There is a great need for better estimation of digestibility of grasses and of carbon sequestration, in order to reduce the uncertainties associated with the environmental impacts evaluated of outdoor pigs' systems. Funded by European Union's H2020 RIA program (grant agreement no. 634476).
In: Book of Abstracts of the 69th Annual Meeting of the European Federation of Animal Science. (24)2018; 69. Annual Meeting of the European Federation of Animal Science (EAAP), Dubrovnick, HRV, 2018-08-27-2018-08-31, 487
Traditional pig productions systems, relying mainly on local pig breeds and outdoor rearing, have been poorly investigated so far in terms of environmental impacts. The few existing studies did not account for possible sequestration of carbon and emissions consecutive to grazing. Twenty-five farms of Gascon breed in France (FR), 8 with Mora Romagnola breed in Italy (IT), and 15 of Krškopolje breed in Slovenia (SI) were evaluated while accounting for the emissions from pasture intake and the potential for carbon sequestration. Pig production system in SI presented the lowest impacts per kg of live weight, due to better feed conversion ratio caused by indoor production and due to lower impacts of feeds – most diets were based on grains, vegetables, tubers and roots produced on farm. Among the systems, acidification potential (AP) was 13% higher in IT than the average for FR and SI, due to higher dietary crude protein content (+9% than the average), while the eutrophication potential (EP) was 27% higher in FR system than the average, as a result of higher phosphorus content of feeds (+28% than the average). When the potential of carbon sequestration was taken into account, the GWP impact was reduced 4% on average. Conversely, when accounting for the emissions from pasture intake the GWP was increased by 2%, mainly when a high digestible grass was considered. The use of high digestible grass provided lower AP and EP impacts than low digestible grass. The large variability between farms in terms of environmental impacts suggests that the margins for improvement of local breeds' production rely on improvement of feed composition and supply, and origin of feed ingredients. There is a great need for better estimation of digestibility of grasses and of carbon sequestration, in order to reduce the uncertainties associated with the environmental impacts evaluated of outdoor pigs' systems. Funded by European Union's H2020 RIA program (grant agreement no. 634476).
In the past decade in vitro tests have been developed that represent a range of anatomic structure from perfused whole organs to subcellular fractions. To assess the use of in vitro tests for toxicity testing, we describe and evaluate the current status of organotypic cultures for the major target organs of toxic agents. This includes liver, kidney, neural tissue, the hematopoietic system, the immune system, reproductive organs, and the endocrine system. The second part of this report reviews the application of in vitro culture systems to organ specific toxicity and evaluates the application of these systems both in industry for safety assessment and in government for regulatory purposes. Members of the working group (WG) felt that access to high-quality human material is essential for better use of in vitro organ and tissue cultures in the risk assessment process. Therefore, research should focus on improving culture techniques that will allow better preservation of human material. The WG felt that it is also important to develop and make available relevant reference compounds for toxicity assessment in each organ system, to organize and make available via the Internet complete in vivo toxicity data, including human data, containing dose, end points, and toxicokinetics. The WG also recommended that research should be supported to identify and to validate biological end points for target organ toxicity to be used in alternative toxicity testing strategies.
This paper presents a synthesis of the work developed in Portugal, by LNEC, TARH and UAlg, for the European Union Seventh Framework Programme project "Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought – MARSOL". The main achievements gathered in the DEMO sites during 2014, the first year of the project, are briefly presented. ; 05p ; DHA/NRE
Biotechnological drugs have become a fundamental resource for the treatment of rheumatic patients. Patent expiry of some of these drugs created the opportunity for biopharmaceutical manufacturers to develop biosimilar drugs intended to be as efficacious as the originator product but with a lower cost to healthcare systems. Due to the complex manufacturing process and highly intricate structure of biologicals, a biosimilar can never be an exact copy of its reference product. Consequently, regulatory authorities issued strict preclinical and clinical guidelines to ensure safety and efficacy equivalence and, in September 2013, the biosimilar of infliximab was the first biosimilar monoclonal antibody to be authorized for use in the European Union. The current document is a position statement of the "Sociedade Portuguesa de Reumatologia" (Portuguese Society of Rheumatology) on the use of biosimilar drugs in rheumatic diseases. Two systematic literature reviews were performed, one concerning clinical trials and the other one concerning international position papers on biosimilars. The results were presented and discussed in a national meeting and a final position document was discussed, written and approved by Portuguese rheumatologists. Briefly, this position statement is contrary to automatic substitution of the originator by the biosimilar, defends either a different INN or the prescription by brand name, supports that switching between biosimilars and the originator molecule should be done after at least 6 months of treatment and based on the attending physician decision and after adequate patient information, recommends the registration of all biosimilar treated patients in Reuma.pt for efficacy, safety and immunogenicity surveillance, following the strategy already ongoing for originators, and opposes to extrapolation of indications approved to the originator to completely different diseases and/or age groups without adequate pre-clinical, safety or efficacy data. ; info:eu-repo/semantics/publishedVersion
UK Space Agency ; European Research Council ; UK Science & Technology Facilities Council ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule (ETH) Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai (IEEC/CSIC) ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; associated Excellence Cluster Universe ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Accelerator Laboratory ; Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; National Science Foundation ; MINECO ; European Union ; CERCA programme of the Generalitat de Catalunya ; European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; U.S. Department of Energy, Office of Science, Office of High Energy Physics ; United States Government ; UK Space Agency: ST/K00283X/1 ; UK Science & Technology Facilities Council: ST/K0090X/1 ; CNPq: 465376/2014-2 ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-66861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2016-0588 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509 ; European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant: 240672 ; European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant: 291329 ; European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant: 306478 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; U.S. Department of Energy, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359 ; Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimization of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift-dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a 2LPTdensity field with an empirical halo bias, For each of them, a light-cone is constructed by the superposition of snapshots in the redshift range 0.45 < z < 1.4. Uncertainties introduced by so-called photometric redshifts estimators were modelled with a double-skewed-Gaussian curve fitted to the data. We populate haloes with galaxies by introducing a hybrid halo occupation distribution-halo abundance matching model with two free parameters. These are adjusted to achieve a galaxy bias evolution b(z(ph)) that matches the data at the 1 sigma level in the range 0.6 < z(ph) < 1.0. We further analyse the galaxy mock catalogues and compare their clustering to the data using the angular correlation function w(theta), the comoving transverse separation clustering xi(mu < 0.8)(S-perpendicular to) and the angular power spectrum C-l, finding them in agreement. This is the first large set of three-dimensional {RA,Dec.,z} galaxy mock catalogues able to simultaneously accurately reproduce the photometric redshift uncertainties and the galaxy clustering.
Background: Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. Results: The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Conclusions: Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem ...
Spanish Ministerio de Economia y Competitividad (MINECO) ; Centro de Excelencia Severo Ochoa ; U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas ; Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule (ETH) Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai (IEEC/CSIC) ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitar Munchen ; Excellence Cluster Universe ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Accelerator Laboratory ; Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; National Science Foundation ; MINECO ; European Research Council under the European Union ; NASA ; Science and Technology Facilities Council ; ICREA ; Spanish Ministerio de Economia y Competitividad (MINECO): FPA2012-39684 ; Centro de Excelencia Severo Ochoa: SEV-2012-0234 ; Centro de Excelencia Severo Ochoa: SEV-2012-0249 ; Centro de Investigaciones Energeticas: SEV-2012-0234 ; Centro de Investigaciones Energeticas: SEV-2012-0249 ; National Science Foundation: AST-1138766 ; MINECO: AYA2012-39559 ; MINECO: ESP2013-48274 ; MINECO: FPA2013-47986 ; European Research Council under the European Union: 240672 ; European Research Council under the European Union: 291329 ; European Research Council under the European Union: 306478 ; NASA: PF5-160138 ; Science and Technology Facilities Council: ST/M001334/1 ; Small temperature anisotropies in the cosmic microwave background (CMB) can be sourced by density perturbations via the late-time integrated Sachs-Wolfe (ISW) effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey (DES) in a different footprint, and using a different superstructure finding strategy. We identified 52 large voids and 102 superclusters at redshifts 0.2 < z < 0.65. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with Delta T-f approximate to -5.0 +/- 3.7 mu K and a hot imprint of superclusters Delta T-f approximate to 5.1 +/- 3.2 mu K; this is similar to 1.2 sigma higher than the expected vertical bar Delta T-f vertical bar approximate to 0.6 mu K imprint of such superstructures in Lambda cold dark matter (Lambda CDM). If we instead use an a posteriori selected filter size (R/R-v = 0.6), we can find a temperature decrement as large as Delta T-f approximate to -9.8 +/- 4.7 mu K for voids, which is similar to 2 sigma above Lambda CDM expectations and is comparable to previous measurements made using Sloan Digital Sky Survey superstructure data.
Spanish Ministerio de Ciencia e Innovacion (MICINN) ; Ramon y Cajal MICINN programme ; US Department of Energy ; US National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas ; Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule (ETH) Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai (IEEC/CSIC) ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; associated Excellence Cluster Universe ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Accelerator Laboratory ; Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; National Science Foundation ; MINECO ; Centro de Excelencia Severo Ochoa ; European Research Council under the European Union ; Perren Fund ; European Research Council Advanced Grant ; ICREA ; Science and Technology Facilities Council ; Spanish Ministerio de Ciencia e Innovacion (MICINN): 200850I176 ; Spanish Ministerio de Ciencia e Innovacion (MICINN): AYA2009-13936 ; Spanish Ministerio de Ciencia e Innovacion (MICINN): AYA2012-39620 ; Spanish Ministerio de Ciencia e Innovacion (MICINN): AYA2013-44327 ; Spanish Ministerio de Ciencia e Innovacion (MICINN): ESP2013-48274 ; Spanish Ministerio de Ciencia e Innovacion (MICINN): ESP2014-58384 ; Spanish Ministerio de Ciencia e Innovacion (MICINN): CSD2007-00060 ; Spanish Ministerio de Ciencia e Innovacion (MICINN): 2009-SGR-1398 ; National Science Foundation: AST-1138766 ; MINECO: ESP2013-48274 ; MINECO: AYA2012-39559 ; MINECO: FPA2013-47986 ; Centro de Excelencia Severo Ochoa: SEV-2012-0234 ; European Research Council under the European Union: 240672 ; European Research Council under the European Union: 291329 ; European Research Council under the European Union: 306478 ; European Research Council Advanced Grant: FP7/291329 ; : AECT-2006-2-0011 ; : AECT-2015-1-0013 ; Science and Technology Facilities Council: ST/M001334/1 ; It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa(WL)) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the counts-in-cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey Science Verification data over 139 deg(2). We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modelled by a lognormal PDF convolved with Poisson noise at angular scales from 10 to 40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as kappa(WL) is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa(WL) distribution is well modelled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fitting chi(2)/dof of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07, respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check, we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.