A systems‐based approach to the environmental risk assessment of multiple stressors in honey bees
In: EFSA journal, Band 19, Heft 5
ISSN: 1831-4732
47 Ergebnisse
Sortierung:
In: EFSA journal, Band 19, Heft 5
ISSN: 1831-4732
In: EFSA journal, Band 19, Heft 3
ISSN: 1831-4732
This guidance document provides harmonised and flexible methodologies to apply scientific criteria and prioritisation methods for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. In the context of EFSA's risk assessments, the problem formulation step defines the chemicals to be assessed in the terms of reference usually through regulatory criteria often set by risk managers based on legislative requirements. Scientific criteria such as hazard‐driven criteria can be used to group these chemicals into assessment groups. In this guidance document, a framework is proposed to apply hazard‐driven criteria for grouping of chemicals into assessment groups using mechanistic information on toxicity as the gold standard where available (i.e. common mode of action or adverse outcome pathway) through a structured weight of evidence approach. However, when such mechanistic data are not available, grouping may be performed using a common adverse outcome. Toxicokinetic data can also be useful for grouping, particularly when metabolism information is available for a class of compounds and common toxicologically relevant metabolites are shared. In addition, prioritisation methods provide means to identify low‐priority chemicals and reduce the number of chemicals in an assessment group. Prioritisation methods include combined risk‐based approaches, risk‐based approaches for single chemicals and exposure‐driven approaches. Case studies have been provided to illustrate the practical application of hazard‐driven criteria and the use of prioritisation methods for grouping of chemicals in assessment groups. Recommendations for future work are discussed.
BASE
In: EFSA Scientific Committee , More , S J , Bampidis , V , Benford , D , Bragard , C , Hernandez‐Jerez , A , Bennekou , S H , Halldorsson , T I , Koutsoumanis , K P , Lambré , C , Machera , K , Naegeli , H , Nielsen , S S , Schlatter , J R , Schrenk , D , Silano , V , Turck , D , Younes , M , Benfenati , E , Crépet , A , Te Biesebeek , J D , Testai , E , Dujardin , B , Dorne , J L CM & Hogstrand , C 2021 , ' Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals ' , EFSA Journal , vol. 19 , no. 12 , e07033 . https://doi.org/10.2903/j.efsa.2021.7033
This guidance document provides harmonised and flexible methodologies to apply scientific criteria and prioritisation methods for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. In the context of EFSA's risk assessments, the problem formulation step defines the chemicals to be assessed in the terms of reference usually through regulatory criteria often set by risk managers based on legislative requirements. Scientific criteria such as hazard‐driven criteria can be used to group these chemicals into assessment groups. In this guidance document, a framework is proposed to apply hazard‐driven criteria for grouping of chemicals into assessment groups using mechanistic information on toxicity as the gold standard where available (i.e. common mode of action or adverse outcome pathway) through a structured weight of evidence approach. However, when such mechanistic data are not available, grouping may be performed using a common adverse outcome. Toxicokinetic data can also be useful for grouping, particularly when metabolism information is available for a class of compounds and common toxicologically relevant metabolites are shared. In addition, prioritisation methods provide means to identify low‐priority chemicals and reduce the number of chemicals in an assessment group. Prioritisation methods include combined risk‐based approaches, risk‐based approaches for single chemicals and exposure‐driven approaches. Case studies have been provided to illustrate the practical application of hazard‐driven criteria and the use of prioritisation methods for grouping of chemicals in assessment groups. Recommendations for future work are discussed.
BASE
In: EFSA Scientific Committee , More , S , Bampidis , V , Benford , D , Bragard , C , Halldorsson , T , Hernández-Jerez , A , Bennekou , S H , Koutsoumanis , K , Machera , K , Naegeli , H , Nielsen , S S , Schlatter , J , Schrenk , D , Silano , V , Turck , D , Younes , M , Arnold , G , Dorne , J-L , Maggiore , A , Pagani , S , Szentes , C , Terry , S , Tosi , S , Vrbos , D , Zamariola , G & Rortais , A 2021 , ' A systems-based approach to the environmental risk assessment of multiple stressors in honey bees ' , EFSA Journal , vol. 19 , no. 5 , e06607 , pp. 1-75 . https://doi.org/10.2903/j.efsa.2021.6607
Abstract The European Parliament requested EFSA to develop a holistic risk assessment of multiple stressors in honey bees. To this end, a systems-based approach that is composed of two core components: a monitoring system and a modelling system are put forward with honey bees taken as a showcase. Key developments in the current scientific opinion (including systematic data collection from sentinel beehives and an agent-based simulation) have the potential to substantially contribute to future development of environmental risk assessments of multiple stressors at larger spatial and temporal scales. For the monitoring, sentinel hives would be placed across representative climatic zones and landscapes in the EU and connected to a platform for data storage and analysis. Data on bee health status, chemical residues and the immediate or broader landscape around the hives would be collected in a harmonised and standardised manner, and would be used to inform stakeholders, and the modelling system, ApisRAM, which simulates as accurately as possible a honey bee colony. ApisRAM would be calibrated and continuously updated with incoming monitoring data and emerging scientific knowledge from research. It will be a supportive tool for beekeeping, farming, research, risk assessment and risk management, and it will benefit the wider society. A societal outlook on the proposed approach is included and this was conducted with targeted social science research with 64 beekeepers from eight EU Member States and with members of the EU Bee Partnership. Gaps and opportunities are identified to further implement the approach. Conclusions and recommendations are made on a way forward, both for the application of the approach and its use in a broader context.
BASE
In: EFSA journal, Band 18, Heft 8
ISSN: 1831-4732
The Scientific Committee confirms that the Threshold of Toxicological Concern (TTC) is a pragmatic screening and prioritisation tool for use in food safety assessment. This Guidance provides clear step‐by‐step instructions for use of the TTC approach. The inclusion and exclusion criteria are defined and the use of the TTC decision tree is explained. The approach can be used when the chemical structure of the substance is known, there are limited chemical‐specific toxicity data and the exposure can be estimated. The TTC approach should not be used for substances for which EU food/feed legislation requires the submission of toxicity data or when sufficient data are available for a risk assessment or if the substance under consideration falls into one of the exclusion categories. For substances that have the potential to be DNA‐reactive mutagens and/or carcinogens based on the weight of evidence, the relevant TTC value is 0.0025 μg/kg body weight (bw) per day. For organophosphates or carbamates, the relevant TTC value is 0.3 μg/kg bw per day. All other substances are grouped according to the Cramer classification. The TTC values for Cramer Classes I, II and III are 30 μg/kg bw per day, 9 μg/kg bw per day and 1.5 μg/kg bw per day, respectively. For substances with exposures below the TTC values, the probability that they would cause adverse health effects is low. If the estimated exposure to a substance is higher than the relevant TTC value, a non‐TTC approach is required to reach a conclusion on potential adverse health effects.
BASE
In: EFSA journal, Band 16, Heft 1
ISSN: 1831-4732
In: EFSA journal, Band 22, Heft 7
ISSN: 1831-4732
Abstract
The European Commission asked EFSA for a risk assessment on small organoarsenic species in food. For monomethylarsonic acid MMA(V), decreased body weight resulting from diarrhoea in rats was identified as the critical endpoint and a BMDL10 of 18.2 mg MMA(V)/kg body weight (bw) per day (equivalent to 9.7 mg As/kg bw per day) was calculated as a reference point (RP). For dimethylarsinic acid DMA(V), increased incidence in urinary bladder tumours in rats was identified as the critical endpoint. A BMDL10 of 1.1 mg DMA(V)/kg bw per day (equivalent to 0.6 mg As/kg bw per day) was calculated as an RP. For other small organoarsenic species, the toxicological data are insufficient to identify critical effects and RPs, and they could not be included in the risk assessment. For both MMA(V) and DMA(V), the toxicological database is incomplete and a margin of exposure (MOE) approach was applied for risk characterisation. The highest chronic dietary exposure to DMA(V) was estimated in 'Toddlers', with rice and fish meat as the main contributors across population groups. For MMA(V), the highest chronic dietary exposures were estimated for high consumers of fish meat and processed/preserved fish in 'Infants' and 'Elderly' age class, respectively. For MMA(V), an MOE of ≥ 500 was identified not to raise a health concern. For MMA(V), all MOEs were well above 500 for average and high consumers and thus do not raise a health concern. For DMA(V), an MOE of 10,000 was identified as of low health concern as it is genotoxic and carcinogenic, although the mechanisms of genotoxicity and its role in carcinogenicity of DMA(V) are not fully elucidated. For DMA(V), MOEs were below 10,000 in many cases across dietary surveys and age groups, in particular for some 95th percentile exposures. The Panel considers that this would raise a health concern.
In: EFSA journal, Band 22, Heft 7
ISSN: 1831-4732
Abstract
The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. The TUs in the QPS list were updated based on a verification, against their respective authoritative databases, of the correctness of the names and completeness of synonyms. A new procedure has been established to ensure the TUs are kept up to date in relation to recent taxonomical insights. Of 83 microorganisms notified to EFSA between October 2023 and March 2024 (47 as feed additives, 25 as food enzymes or additives, 11 as novel foods), 75 were not evaluated because: 15 were filamentous fungi, 1 was Enterococcus faecium, 10 were Escherichia coli, 1 was a Streptomyces (all excluded from the QPS evaluation) and 48 were TUs that already have a QPS status. Two of the other eight notifications were already evaluated for a possible QPS status in the previous Panel Statement: Heyndrickxia faecalis (previously Weizmannia faecalis) and Serratia marcescens. One was notified at genus level so could not be assessed for QPS status. The other five notifications belonging to five TUs were assessed for possible QPS status. Akkermansia muciniphila and Actinomadura roseirufa were still not recommended for QPS status due to safety concerns. Rhizobium radiobacter can be recommended for QPS status with the qualification for production purposes. Microbacterium arborescens and Burkholderia stagnalis cannot be included in the QPS list due to a lack of body of knowledge for its use in the food and feed chain and for B. stagnalis also due to safety concerns. A. roseirufa and B. stagnalis have been excluded from further QPS assessment.
In: EFSA journal, Band 22, Heft 7
ISSN: 1831-4732
Abstract
The EFSA Scientific Committee has updated its 2010 Guidance on risk–benefit assessment (RBA) of foods. The update addresses methodological developments and regulatory needs. While it retains the stepwise RBA approach, it provides additional methods for complex assessments, such as multiple chemical hazards and all relevant health effects impacting different population subgroups. The updated guidance includes approaches for systematic identification, prioritisation and selection of hazardous and beneficial food components. It also offers updates relevant to characterising adverse and beneficial effects, such as measures of effect size and dose–response modelling. The guidance expands options for characterising risks and benefits, incorporating variability, uncertainty, severity categorisation and ranking of different (beneficial or adverse) effects. The impact of different types of health effects is assessed qualitatively or quantitatively, depending on the problem formulation, scope of the RBA question and data availability. The integration of risks and benefits often involves value‐based judgements and should ideally be performed with the risk–benefit manager. Metrics such as Disability‐Adjusted Life Years (DALYs) and Quality‐Adjusted Life Years (QALYs) can be used. Additional approaches are presented, such as probability of all relevant effects and/or effects of given severities and their integration using severity weight functions. The update includes practical guidance on reporting results, interpreting outcomes and communicating the outcome of an RBA, considering consumer perspectives and responses to advice.
In: EFSA journal, Band 19, Heft 12
ISSN: 1831-4732
In: EFSA Scientific Committee , More , S J , Bampidis , V , Benford , D , Bragard , C , Hernandez-Jerez , A , Bennekou , S H , Halldorsson , T I , Koutsoumanis , K P , Lambré , C , Machera , K , Naegeli , H , Nielsen , S S , Schlatter , J R , Schrenk , D , Silano (deceased) , V , Turck , D , Younes , M , Benfenati , E , Crépet , A , Te Biesebeek , J D , Testai , E , Dujardin , B , Dorne , J L CM & Hogstrand , C 2021 , ' Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals ' , EFSA Journal , vol. 19 , no. 12 , e07033 , pp. 1-37 . https://doi.org/10.2903/j.efsa.2021.7033
Abstract This guidance document provides harmonised and flexible methodologies to apply scientific criteria and prioritisation methods for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. In the context of EFSA's risk assessments, the problem formulation step defines the chemicals to be assessed in the terms of reference usually through regulatory criteria often set by risk managers based on legislative requirements. Scientific criteria such as hazard-driven criteria can be used to group these chemicals into assessment groups. In this guidance document, a framework is proposed to apply hazard-driven criteria for grouping of chemicals into assessment groups using mechanistic information on toxicity as the gold standard where available (i.e. common mode of action or adverse outcome pathway) through a structured weight of evidence approach. However, when such mechanistic data are not available, grouping may be performed using a common adverse outcome. Toxicokinetic data can also be useful for grouping, particularly when metabolism information is available for a class of compounds and common toxicologically relevant metabolites are shared. In addition, prioritisation methods provide means to identify low-priority chemicals and reduce the number of chemicals in an assessment group. Prioritisation methods include combined risk-based approaches, risk-based approaches for single chemicals and exposure-driven approaches. Case studies have been provided to illustrate the practical application of hazard-driven criteria and the use of prioritisation methods for grouping of chemicals in assessment groups. Recommendations for future work are discussed.
BASE
In: EFSA journal, Band 17, Heft 6
ISSN: 1831-4732
In: EFSA journal, Band 17, Heft 4
ISSN: 1831-4732