Suchergebnisse
Filter
20 Ergebnisse
Sortierung:
Changes in mortality inequalities over two decades : register based study of European countries
OBJECTIVE To determine whether government efforts in reducing inequalities in health in European countries have actually made a difference to mortality inequalities by socioeconomic group. DESIGN Register based study. DATA SOURCE Mortality data by level of education and occupational class in the period 1990-2010, usually collected in a census linked longitudinal study design. We compared changes in mortality between the lowest and highest socioeconomic groups, and calculated their effect on absolute and relative inequalities in mortality (measured as rate differences and rate ratios, respectively). SETTING All European countries for which data on socioeconomic inequalities in mortality were available for the approximate period between years 1990 and 2010. These included Finland, Norway, Sweden, Scotland, England and Wales (data applied to both together), France, Switzerland, Spain (Barcelona), Italy (Turin), Slovenia, and Lithuania. RESULTS Substantial mortality declines occurred in lower socioeconomic groups in most European countries covered by this study. Relative inequalities in mortality widened almost universally, because percentage declines were usually smaller in lower socioeconomic groups. However, as absolute declines were often smaller in higher socioeconomic groups, absolute inequalities narrowed by up to 35%, particularly among men. Narrowing was partly driven by ischaemic heart disease, smoking related causes, and causes amenable to medical intervention. Progress in reducing absolute inequalities was greatest in Spain (Barcelona), Scotland, England and Wales, and Italy (Turin), and absent in Finland and Norway. More detailed studies preferably using individual level data are necessary to identify the causes of these variations. CONCLUSIONS Over the past two decades, trends in inequalities in mortality have been more favourable in most European countries than is commonly assumed. Absolute inequalities have decreased in several countries, probably more as a side effect of population wide behavioural changes and improvements in prevention and treatment, than as an effect of policies explicitly aimed at reducing health inequalities.
BASE
Technical validation of real-world monitoring of gait: a multicentric observational study
INTRODUCTION: Existing mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real-world, however, is still limited in patient populations. Rigorous validation procedures should cover the device metrological verification, the validation of the algorithms for the DMOs computation specifically for the population of interest and in daily life situations, and the users' perspective on the device. METHODS AND ANALYSIS: This protocol was designed to establish the technical validity and patient acceptability of the approach used to quantify digital mobility in the real world by Mobilise-D, a consortium funded by the European Union (EU) as part of the Innovative Medicine Initiative, aiming at fostering regulatory approval and clinical adoption of DMOs. After defining the procedures for the metrological verification of an IMU-based device, the experimental procedures for the validation of algorithms used to calculate the DMOs are presented. These include laboratory and real-world assessment in 120 participants from five groups: healthy older adults; chronic obstructive pulmonary disease, Parkinson's disease, multiple sclerosis, proximal femoral fracture and congestive heart failure. DMOs extracted from the monitoring device will be compared with those from different reference systems, chosen according to the contexts of observation. Questionnaires and interviews will evaluate the users' perspective on the deployed technology and relevance of the mobility assessment. ETHICS AND DISSEMINATION: The study has been granted ethics approval by the centre's committees (London—Bloomsbury Research Ethics committee; Helsinki Committee, Tel Aviv ...
BASE
Technical validation of real-world monitoring of gait: a multicentric observational study
Abstract Introduction Existing mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real-world, however, is still limited in patient populations. Rigorous validation procedures should cover the device metrological verification, the validation of the algorithms for the DMOs computation specifically for the population of interest and in daily life situations, and the users' perspective on the device. Methods and analysis This protocol was designed to establish the technical validity and patient acceptability of the approach used to quantify digital mobility in the real world by Mobilise-D, a consortium funded by the European Union (EU) as part of the Innovative Medicine Initiative, aiming at fostering regulatory approval and clinical adoption of DMOs. After defining the procedures for the metrological verification of an IMU-based device, the experimental procedures for the validation of algorithms used to calculate the DMOs are presented. These include laboratory and real-world assessment in 120 participants from five groups: healthy older adults; chronic obstructive pulmonary disease, Parkinson's disease, multiple sclerosis, proximal femoral fracture and congestive heart failure. DMOs extracted from the monitoring device will be compared with those from different reference systems, chosen according to the contexts of observation. Questionnaires and interviews will evaluate the users' perspective on the deployed technology and relevance of the mobility assessment. Ethics and dissemination The study has been granted ethics approval by the centre's committees (London—Bloomsbury Research Ethics committee; Helsinki Committee, Tel ...
BASE
Seven-Year Experience From the National Institute of Neurological Disorders and Stroke-Supported Network for Excellence in Neuroscience Clinical Trials
ImportanceOne major advantage of developing large, federally funded networks for clinical research in neurology is the ability to have a trial-ready network that can efficiently conduct scientifically rigorous projects to improve the health of people with neurologic disorders.ObservationsNational Institute of Neurological Disorders and Stroke Network for Excellence in Neuroscience Clinical Trials (NeuroNEXT) was established in 2011 and renewed in 2018 with the goal of being an efficient network to test between 5 and 7 promising new agents in phase II clinical trials. A clinical coordinating center, data coordinating center, and 25 sites were competitively chosen. Common infrastructure was developed to accelerate timelines for clinical trials, including central institutional review board (a first for the National Institute of Neurological Disorders and Stroke), master clinical trial agreements, the use of common data elements, and experienced research sites and coordination centers. During the first 7 years, the network exceeded the goal of conducting 5 to 7 studies, with 9 funded. High interest was evident by receipt of 148 initial applications for potential studies in various neurologic disorders. Across the first 8 studies (the ninth study was funded at end of initial funding period), the central institutional review board approved the initial protocol in a mean (SD) of 59 (21) days, and additional sites were added a mean (SD) of 22 (18) days after submission. The median time from central institutional review board approval to first site activation was 47.5 days (mean, 102.1; range, 1-282) and from first site activation to first participant consent was 27 days (mean, 37.5; range, 0-96). The median time for database readiness was 3.5 months (mean, 4.0; range, 0-8) from funding receipt. In the 4 completed studies, enrollment met or exceeded expectations with 96% overall data accuracy across all sites. Nine peer-reviewed manuscripts were published, and 22 oral presentations or posters and 9 invited presentations were given at regional, national, and international meetings.Conclusions and relevanceNeuroNEXT initiated 8 studies, successfully enrolled participants at or ahead of schedule, collected high-quality data, published primary results in high-impact journals, and provided mentorship, expert statistical, and trial management support to several new investigators. Partnerships were successfully created between government, academia, industry, foundations, and patient advocacy groups. Clinical trial consortia can efficiently and successfully address a range of important neurologic research and therapeutic questions.
BASE