"Union Carbide Corporation Nuclear Division operating the Oak Ridge Gaseous Diffusion Plant, Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and Paducah Gaseous Diffusion Plant for the Atomic Energy Commission under U.S. government contract W-7405-eng-26." ; "Date Issued: July 13, 1964" ; "April 24, 1964" ; Y-1470-H ; "Chemistry; TID-4500 (29th Edition)." ; Includes bibliographical references (p. 11). ; U.S. Atomic Energy Commission ; Mode of access: Internet.
"Union Carbide Corporation Nuclear Division operating the Oak Ridge Gaseous Diffusion Plant, Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and Paducah Gaseous Diffusion Plant for the Atomic Energy Commission under U.S. government contract W-7405-eng-26." ; "Date Issued: September 29, 1964" ; "August 17, 1964" ; Y-1470-I ; "Chemistry; TID-4500 (32nd Edition)." ; Includes bibliographical references (p. 11). ; U.S. Atomic Energy Commission ; Mode of access: Internet.
This is the final version. Available on open access from Cambridge University Press via the DOI in this record. ; Note: this article was retracted on 17 June 2019 (https://doi.org/10.1192/bjo.2019.46) for reasons of accuracy in the reporting of alcohol use disorders, as discussed in an editorial – Kaufman KR, Malhi GS, Bhui KS. When a corrigendum is not sufficient, 2019 (https://doi.org/10.1192/bjo.2019.41) . A reanalysis was published in BJPsych Open on 6 February 2020 at DOI: https://doi.org/10.1192/bjo.2019.100, and is available in ORE at http://hdl.handle.net/10871/120831 ; Background: UK Biobank is a well-characterised cohort of over 500,000 participants that offers unique opportunities to investigate multiple diseases and risk factors. An online mental health questionnaire completed by UK Biobank participants expands the potential for research into mental disorders. Methods: An expert working group designed the questionnaire, using established measures where possible, and consulting with a service user group regarding acceptability. Case definitions were defined using operational criteria for lifetime depression, mania, anxiety disorder, psychotic-like experiences and self-harm, and current post-traumatic stress and alcohol use disorders. Results: 157,366 completed online questionnaires were available by August 2017. Comparison of self-reported diagnosed mental disorder with a contemporary study shows a similar prevalence, despite respondents being of higher average socioeconomic status than the general population across a range of indicators. Thirty-five percent (55,750) of participants had at least one defined syndrome, of which lifetime depression was the most common at 24% (37,434). There was extensive comorbidity among the syndromes. Mental disorders were associated with high neuroticism score, adverse life events and long-term illness; addiction and bipolar affective disorder in particular were associated measures of deprivation. Conclusions: The questionnaire represents a very large mental health survey in itself, and the results presented here show high face validity, although caution is needed due to selection bias. Built into UK Biobank, these data intersect with other health data to offer unparalleled potential for crosscutting biomedical research involving mental health. ; This paper represents independent research funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London. In addition, individual authors have declared the following funding: MA is supported by a Wellcome Trust Strategic Award (Reference 10436/Z/14/Z). BC is funded by the Scottish Executive Chief Scientist Office (DTF/14/03) and by The Dr Mortimer and Theresa Sackler Foundation. EF is supported by the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no: [324176]. LMH is supported by an NIHR Research Professorship (NIHR-RP-R3-12-011) in Women's Mental Health. AJ is funded by the Farr Institute and HCRW (CA-04). WL is supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula. AM is supported by a Wellcome Trust Strategic Award (Reference 10436/Z/14/Z). DS receives funding from a Lister Institute Prize Fellowship (2016-2021). SZ is supported by the NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol.
Medical Research Council-UK (Grant ID: MR/M022625/1); Natural Environment Research Council UK (Grant ID: NE/R009384/1); European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655); N. Scovronick was supported by the NIEHS-funded HERCULES Center (P30ES019776); Y. Honda was supported by the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency, Japan (JPMEERF15S11412); J. Jaakkola was supported by Academy of Finland (Grant No. 310372); V. Huber was supported by the Spanish Ministry of Economy, Industry and Competitiveness (Grant ID: PCIN-2017-046) and the German Federal Ministry of Education and Research (Grant ID: 01LS1201A2); J Kysely and A. Urban were supported by the Czech Science Foundation (Grant ID: 20-28560S); J. Madureira was supported by the Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BPD/115112/2016); S. Rao and F. di Ruscio were supported by European Union's Horizon 2020 Project EXHAUSTION (Grant ID: 820655); M. Hashizume was supported by the Japan Science and Technology Agency (JST) as part of SICORP, Grant Number JPMJSC20E4; Y. Guo was supported by the Career Development Fellowship of the Australian National Health and Medical Research Council (#APP1163693); S. Lee was support by the Early Career Fellowship of the Australian National Health and Medical Research Council (#APP1109193).
Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broadspectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered. (C) 2015 The Authors. Published by Elsevier Ltd. ; Funding Agencies|Terry Fox Foundation Grant [TF-13-20]; UAEU Program for Advanced Research (UPAR) [31S118]; NIH [AR47901, R21CA188818, R15 CA137499-01, F32CA177139, P20RR016477, P20GM103434, R01CA170378, U54CA149145, U54CA143907, R01-HL107652, R01CA166348, R01GM071725, R01 CA109335-04A1, 109511R01CA151304CA168997 A11106131R03CA1711326 1P01AT003961RO1 CA100816P01AG034906 R01AG020642P01AG034906-01A1R01HL108006]; NIH NRSA Grant [F31CA154080]; NIH (NIAID) R01: Combination therapies for chronic HBV, liver disease, and cancer [AI076535]; Sky Foundation Inc. Michigan; University of Glasgow; Beatson Oncology Centre Fund; Spanish Ministry of Economy and Competitivity, ISCIII [PI12/00137, RTICC: RD12/0036/0028]; FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion [CTS-6844, CTS-1848]; Consejeria de Salud of the Junta de Andalucia [PI-0135-2010, PI-0306-2012]; ISCIII [PIE13/0004]; FEDER funds; United Soybean Board; NIH NCCAM Grant [K01AT007324]; NIH NCI Grant [R33 CA161873-02]; Michael Cuccione Childhood Cancer Foundation Graduate Studentship; Ovarian and Prostate Cancer Research Trust, UK; West Virginia Higher Education Policy Commission/Division of Science Research; National Institutes of Health; Italian Association for Cancer Research (AIRC) [IG10636, 15403]; GRACE Charity, UK; Breast Cancer Campaign, UK; Michael Cuccione Childhood Cancer Foundation Postdoctoral Fellowship; Connecticut State University; Swedish Research Council; Swedish Research Society; University of Texas Health Science Centre at Tyler, Elsa U. Pardee Foundation; CPRIT; Cancer Prevention and Research Institute of Texas; NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); NIH National Institute on Alcohol Abuse and Alcoholism (NIAAA); Gilead and Shire Pharmaceuticals; NIH/NCI [1R01CA20009, 5R01CAl27258-05, R21CA184788, NIH P30 CA22453, NCI RO1 28704]; Scottish Governments Rural and Environment Science and Analytical Services Division; National Research Foundation; United Arab Emirates University; Terry Fox Foundation; Novartis Pharmaceutical; Aveo Pharmaceutical; Roche; Bristol Myers Squibb; Bayer Pharmaceutical; Pfizer; Kyowa Kirin; NIH/NIAID Grant [A1076535]; Auckland Cancer Society; Cancer Society of New Zealand; NIH Public Service Grant from the National Cancer Institute [CA164095]; Medical Research Council CCU-Program Grant on cancer metabolism; EU Marie Curie Reintegration Grant [MC-CIG-303514]; Greek National funds through the Operational Program Educational and Lifelong Learning of the National Strategic Reference Framework (NSRF)-Research Funding Program THALES [MIS 379346]; COST Action CM1201 `Biomimetic Radical Chemistry; Duke University Molecular Cancer Biology T32 Training Grant; National Sciences Engineering and Research Council Undergraduate Student Research Award in Canada; Charles University in Prague projects [UNCE 204015, PRVOUK P31/2012]; Czech Science Foundation projects [15-03834Y, P301/12/1686]; Czech Health Research Council AZV project [15-32432A]; Internal Grant Agency of the Ministry of Health of the Czech Republic project [NT13663-3/2012]; National Institute of Aging [P30AG028716-01]; NIH/NCI training grants to Duke University [T32-CA059365-19, 5T32-CA059365]; Ministry of Education, Culture, Sports, Science and Technology, Japan [24590493]; Ministry of Health and Welfare [CCMP101-RD-031, CCMP102-RD-112]; Tzu-Chi University of Taiwan [61040055-10]; Svenska Sallskapet for Medicinsk Forskning; Cancer Research Wales; Albert Hung Foundation; Fong Family Foundation; Welsh Government A4B scheme; NIH NCI; University of Glasgow, Beatson Oncology Centre Fund, CRUK [C301/A14762]; NIH Intramural Research Program; National Science Foundation; American Cancer Society; National Cancer Center [NCC-1310430-2]; National Research Foundation [NRF-2005-0093837]; Sol Goldman Pancreatic Cancer Research Fund Grant [80028595]; Lustgarten Fund Grant [90049125, NIHR21CA169757]; Alma Toorock Memorial for Cancer Research; National Research Foundation of Korea (NRF); Ministry of Science, ICT & Future Planning (MSIP), Republic of Korea [2011-0017639, 2011-0030001]; Ministry of Education of Taiwan [TMUTOP103005-4]; International Life Sciences Institute; United States Public Health Services Grants [NIH R01CA156776]; VA-BLR&D Merit Review Grant [5101-BX001517-02]; V Foundation; Pancreatic Cancer Action Network; Damon Runyon Cancer Research Foundation; Childrens Cancer Institute Australia; University Roma Tre; Italian Association for Cancer Research (AIRC-Grant) [IG15221]; Carlos III Health Institute; Feder funds [AM: CP10/00539, PI13/02277]; Basque Foundation for Science (IKERBASQUE); Marie Curie CIG Grant [2012/712404]; Canadian Institutes of Health Research; Avon Foundation for Women [OBC-134038]; Canadian Institutes of Health [MSH-136647, MOP 64308]; Bayer Healthcare System G4T (Grants4Targets); NIH NIDDK; NIH NIAAA; Shire Pharmaceuticals; Harvard-MIT Health Sciences and Technology Research Assistantship Award; Italian Ministry of University; University of Italy; Auckland Cancer Society Research Centre (ACSRC); German Federal Ministry of Education and Research (Bundesministerium fur Bildung und Forschung, BMBF) [16SV5536K]; European Commission [FP7 259679 "IDEAL"]; Cinque per Mille dellIRPEF-Finanziamento della Ricerca Sanitaria; European Union Seventh Framework Programme (FP7) [278570]; AIRC [10216, 13837]; European Communitys Seventh Framework Program FP7 [311876]; Canadian Institute for Health Research [MOP114962, MOP125857]; Fonds de Recherche Quebec Sante [22624]; Terry Fox Research Institute [1030]; FEDER; MICINN [SAF2012-32810]; Junta de Castilla y Leon [BIO/SA06/13]; ARIMMORA project [FP7-ENV-2011]; European Union; NIH NIDDK [K01DK077137, R03DK089130]; NIH NCI grants [R01CA131294, R21 CA155686]; Avon Foundation; Breast Cancer Research Foundation Grant [90047965]; National Institute of Health, NINDS Grant [K08NS083732]; AACR-National Brain Tumor Society Career Development Award for Translational Brain Tumor Research [13-20-23-SIEG]; Department of Science and Technology, New Delhi, India [SR/FT/LS-063/2008]; Yorkshire Cancer Research; Wellcome Trust, UK; Italian Ministry of Economy and Finance Project CAMPUS-QUARC, within program FESR Campania Region; National Cancer Institute [5P01CA073992]; IDEA Award from the Department of Defense [W81XWH-12-1-0515]; Huntsman Cancer Foundation; University of Miami Clinical and Translational Science Institute (CTSI) Pilot Research Grant [CTSI-2013-P03]; SEEDS You Choose Awards; DoD [W81XVVH-11-1-0272, W81XWH-13-1-0182]; Kimmel Translational Science Award [SKF-13-021]; ACS Scholar award [122688-RSG-12-196-01-TBG]; National Cancer Institute, Pancreatic Cancer Action Network, Pew Charitable Trusts; American Diabetes Association; Elsa U. Pardee Foundation; Scientific Research Foundation for the Returned Oversea Scholars, State Education Ministry and Scientific and Technological Innovation Project, Harbin [2012RFLX5011]; United States National Institutes of Health [ES019458]; California Breast Cancer Research Program [17UB-8708]; National Institutes of Health through the RCMI-Center for Environmental Health [G1200MD007581]; NIH/National Heart, Lung, and Blood Institute Training Grant [T32HL098062]; European FP7-TuMIC [HEALTH-F2-2008-201662]; Italian Association for Cancer research (AIRC) Grant IG [11963]; Regione Campania L.R:N.5; European National Funds [PON01-02388/1 2007-2013]
Department of Energy (United States of America) ; National Science Foundation (United States of America) ; Australian Research Council (Australia) ; National Council for the Development of Science and Technology ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Natural Sciences and Engineering Research Council (Canada) ; Chinese Academy of Sciences ; National Natural Science Foundation of China (China) ; Administrative Department of Science, Technology and Innovation (Colombia) ; Ministry of Education, Youth and Sports (Czech Republic) ; Academy of Finland (Finland) ; Alternative Energies and Atomic Energy Commission ; National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France) ; Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) ; Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany) ; Department of Atomic Energy (India) ; Department of Science and Technology (India) ; Science Foundation Ireland (Ireland) ; Istituto Nazionale di Fisica Nucleare (National Institute for Nuclear Physics) (Italy) ; Ministry of Education, Culture, Sports, Science and Technology (Japan) ; Korean World Class University Program ; National Research Foundation (Korea) ; National Council of Science and Technology (Mexico) ; Foundation for Fundamental Research on Matter (The Netherlands) ; National Science Council (Republic of China) ; Ministry of Education and Science of the Russian Federation ; National Research Center Kurchatov Institute of the Russian Federation ; Russian Foundation for Basic Research (Russia) ; Slovak R&D Agency (Slovakia) ; Ministry of Science and Innovation ; Consolider-Ingenio Program (Spain) ; Swedish Research Council (Sweden) ; Swiss National Science Foundation (Switzerland) ; Ministry of Education and Science of Ukraine (Ukraine) ; Science and Technology Facilities Council ; Royal Society (United Kingdom) ; A. P. Sloan Foundation (United States of America) ; European Union community Marie Curie Fellowship ; European Union community Marie Curie Fellowship: 302103 ; Drell-Yan lepton pairs produced in the process p (p) over bar -> l(+)l(-) + X through an intermediate gamma*/Z boson have an asymmetry in their angular distribution related to the spontaneous symmetry breaking of the electroweak force and the associated mixing of its neutral gauge bosons. The CDF and D0 experiments have measured the effective-leptonic electroweak mixing parameter sin(2) theta(lept)(eff) using electron and muon pairs selected from the full Tevatron proton-antiproton data sets collected in 2001-2011, corresponding to 9-10 fb(-1) of integrated luminosity. The combination of these measurements yields the most precise result from hadron colliders, sin(2)theta(lept)(eff) = 0.23148 +/- 0.00033. This result is consistent with, and approaches in precision, the best measurements from electron-positron colliders. The standard model inference of the on-shell electroweak mixing parameter sin(2) theta(W), or equivalently the W-boson mass M-W, using the ZFITTER software package yields sin(2) theta(W) = 0.22324 +/- 0.00033 or equivalently, M-W = 80.367 +/- 0.017 GeV/c(2).
Department of Energy ; National Science Foundation (U.S.A.) ; Australian Research Council (Australia) ; National Council for the Development of Science and Technology ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; European Union community Marie Curie Fellowship Contract ; European Union community Marie Curie Fellowship Contract: 302103 ; : DE-AC02-07CH11359 ; The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of root s = 1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is A(FB)(t (t) over bar) = 0.128 +/- 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Max-Planck Society ; State of Niedersachsen/Germany ; Australian Research Council ; Netherlands Organisation for Scientific Research ; EGO consortium ; Council of Scientific and Industrial Research of India ; Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears ; National Science Centre of Poland ; European Commission ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; Hungarian Scientific Research Fund (OTKA) ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Canadian Institute for Advanced Research ; Brazilian Ministry of Science, Technology, and Innovation ; Russian Foundation for Basic Research ; Leverhulme Trust ; Research Corporation ; Ministry of Science and Technology (MOST), Taiwan ; Kavli Foundation ; Australian Government ; National Collaborative Research Infrastructure Strategy ; Government of Western Australia ; United States Department of Energy ; United States National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Collaborating Institutions in the Dark Energy Survey ; National Science Foundation ; MINECO ; Centro de Excelencia Severo Ochoa ; European Research Council under European Union's Seventh Framework Programme ; ERC ; NASA (United States) ; DOE (United States) ; IN2P3/CNRS (France) ; CEA/Irfu (France) ; ASI (Italy) ; INFN (Italy) ; MEXT (Japan) ; KEK (Japan) ; JAXA (Japan) ; Wallenberg Foundation ; Swedish Research Council ; National Space Board (Sweden) ; NASA in the United States ; DRL in Germany ; INAF for the project Gravitational Wave Astronomy with the first detections of adLIGO and adVIRGO experiments ; ESA (Denmark) ; ESA (France) ; ESA (Germany) ; ESA (Italy) ; ESA (Switzerland) ; ESA (Spain) ; German INTEGRAL through DLR grant ; US under NASA Grant ; National Science Foundation PIRE program grant ; Hubble Fellowship ; KAKENHI of MEXT Japan ; JSPS ; Optical and Near-Infrared Astronomy Inter-University Cooperation Program - MEXT ; UK Science and Technology Facilities Council ; ERC Advanced Investigator Grant ; Lomonosov Moscow State University Development programm ; Moscow Union OPTICA ; Russian Science Foundation ; National Research Foundation of South Africa ; Australian Government Department of Industry and Science and Department of Education (National Collaborative Research Infrastructure Strategy: NCRIS) ; NVIDIA at Harvard University ; University of Hawaii ; National Aeronautics and Space Administration's Planetary Defense Office ; Queen's University Belfast ; National Aeronautics and Space Administration through Planetary Science Division of the NASA Science Mission Directorate ; European Research Council under European Union's Seventh Framework Programme/ERC ; STFC grants ; European Union FP7 programme through ERC ; STFC through an Ernest Rutherford Fellowship ; FONDECYT ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; NASA in the US ; UK Space Agency in the UK ; Agenzia Spaziale Italiana (ASI) in Italy ; Ministerio de Ciencia y Tecnologia (MinCyT) ; Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET) from Argentina ; USA NSF PHYS ; NSF ; ICREA ; Science and Technology Facilities Council ; UK Space Agency ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1238877 ; MINECO: AYA2012-39559 ; MINECO: ESP2013-48274 ; MINECO: FPA2013-47986 ; Centro de Excelencia Severo Ochoa: SEV-2012-0234 ; ERC: 240672 ; ERC: 291329 ; ERC: 306478 ; German INTEGRAL through DLR grant: 50 OG 1101 ; US under NASA Grant: NNX15AU74G ; National Science Foundation PIRE program grant: 1545949 ; Hubble Fellowship: HST-HF-51325.01 ; KAKENHI of MEXT Japan: 24103003 ; KAKENHI of MEXT Japan: 15H00774 ; KAKENHI of MEXT Japan: 15H00788 ; JSPS: 15H02069 ; JSPS: 15H02075 ; ERC Advanced Investigator Grant: 267697 ; Russian Science Foundation: 16-12-00085 ; Russian Science Foundation: RFBR15-02-07875 ; National Aeronautics and Space Administration's Planetary Defense Office: NNX14AM74G ; National Aeronautics and Space Administration through Planetary Science Division of the NASA Science Mission Directorate: NNX08AR22G ; European Research Council under European Union's Seventh Framework Programme/ERC: 291222 ; STFC grants: ST/I001123/1 ; STFC grants: ST/L000709/1 ; European Union FP7 programme through ERC: 320360 ; FONDECYT: 3140326 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; USA NSF PHYS: 1156600 ; NSF: 1242090 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/N000668/1 ; Science and Technology Facilities Council: ST/M000966/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000709/1 ; Science and Technology Facilities Council: ST/J00166X/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/K00090X/1 ; Science and Technology Facilities Council: ST/N000633/1 ; Science and Technology Facilities Council: ST/H001972/1 ; Science and Technology Facilities Council: ST/L000733/1 ; Science and Technology Facilities Council: ST/N000757/1 ; Science and Technology Facilities Council: ST/M001334/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/M003035/1 ; Science and Technology Facilities Council: ST/I001123/1 ; Science and Technology Facilities Council: ST/N00003X/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/N000072/1 ; Science and Technology Facilities Council: ST/L003465/1 ; UK Space Agency: ST/P002196/1 ; This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.
BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CERN ; CAS (China) ; MoST (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC ; HIP (Finland) ; CEA and CNRS/IN2P3 (France) ; BMBF ; DFG ; HGF (Germany) ; GSRT (Greece) ; OTKA and NIH (Hungary) ; DAE ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; NRF ; WCU (Republic of Korea) ; LAS (Lithuania) ; MOE and UM (Malaysia) ; CINVESTAV ; CONACYT ; SEP ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON ; RosAtom ; RAS ; RFBR (Russia) ; MESTD (Serbia) ; SEIDI ; CPAN (Spain) ; Swiss Funding Agencies (Switzerland) ; MST (Taipei) ; ThEPCenter ; IPST ; STAR ; NSTDA (Thailand) ; TUBITAK ; TAEK (Turkey) ; NASU ; SFFR (Ukraine) ; STFC (United Kingdom) ; DOE ; NSF (USA) ; Marie-Curie programme ; European Research Council ; EPLANET (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; HOMING PLUS programme of Foundation For Polish Science ; European Union, Regional Development Fund ; Compagnia di San Paolo (Torino) ; Consorzio per la Fisica (Trieste) ; MIUR project (Italy) ; EU-ESF ; Greek NSRF ; National Priorities Research Program by Qatar National Research Fund ; MIUR project (Italy): 20108T4XTM ; A measurement of the production cross section ratio sigma(chi b2(1P))/sigma(chi b1(1P)) is presented. The chi b1 (1P) and chi b2 (1P) bottomonium states, promptly produced in pp collisions at root s = 8TeV, are detected by the CMS experiment at the CERN LHC through their radiative decays chi b1,2(1P) -> Y(1S) + gamma. The emitted photons are measured through their conversion to e(+) e(-) pairs, whose reconstruction allows the two states to be resolved. The Y(1S) is measured through its decay to two muons. An event sample corresponding to an integrated luminosity of 20.7 fb(-1) is used to measure the cross section ratio in a phase-space region defined by the photon pseudorapidity, vertical bar eta(gamma)vertical bar < 1.0; the Y(1S) rapidity, vertical bar y(Y)vertical bar < 1.5; and the Y(1S) transverse momentum, 7 < p(T)(Y) < 40 GeV. The cross section ratio shows no significant dependence on the.(1S) transverse momentum, with a measured average value of 0.85 +/- 0.07 (stat + syst) +/- 0.08 (BF), where the first uncertainty is the combination of the experimental statistical and systematic uncertainties and the second is from the uncertainty in the ratio of the chi b branching fractions. (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V.
Background Surgery is the main modality of cure for solid cancers and was prioritised to continue during COVID-19 outbreaks. This study aimed to identify immediate areas for system strengthening by comparing the delivery of elective cancer surgery during the COVID-19 pandemic in periods of lockdown versus light restriction. Methods This international, prospective, cohort study enrolled 20 006 adult (≥18 years) patients from 466 hospitals in 61 countries with 15 cancer types, who had a decision for curative surgery during the COVID-19 pandemic and were followed up until the point of surgery or cessation of follow-up (Aug 31, 2020). Average national Oxford COVID-19 Stringency Index scores were calculated to define the government response to COVID-19 for each patient for the period they awaited surgery, and classified into light restrictions (index 60). The primary outcome was the non-operation rate (defined as the proportion of patients who did not undergo planned surgery). Cox proportional-hazards regression models were used to explore the associations between lockdowns and non-operation. Intervals from diagnosis to surgery were compared across COVID-19 government response index groups. This study was registered at ClinicalTrials.gov, NCT04384926. Findings Of eligible patients awaiting surgery, 2003 (10·0%) of 20 006 did not receive surgery after a median follow-up of 23 weeks (IQR 16–30), all of whom had a COVID-19-related reason given for non-operation. Light restrictions were associated with a 0·6% non-operation rate (26 of 4521), moderate lockdowns with a 5·5% rate (201 of 3646; adjusted hazard ratio [HR] 0·81, 95% CI 0·77–0·84; p<0·0001), and full lockdowns with a 15·0% rate (1775 of 11 827; HR 0·51, 0·50–0·53; p<0·0001). In sensitivity analyses, including adjustment for SARS-CoV-2 case notification rates, moderate lockdowns (HR 0·84, 95% CI 0·80–0·88; p<0·001), and full lockdowns (0·57, 0·54–0·60; p<0·001), remained independently associated with non-operation. Surgery beyond 12 weeks from diagnosis in patients without neoadjuvant therapy increased during lockdowns (374 [9·1%] of 4521 in light restrictions, 317 [10·4%] of 3646 in moderate lockdowns, 2001 [23·8%] of 11 827 in full lockdowns), although there were no differences in resectability rates observed with longer delays. Interpretation Cancer surgery systems worldwide were fragile to lockdowns, with one in seven patients who were in regions with full lockdowns not undergoing planned surgery and experiencing longer preoperative delays. Although short-term oncological outcomes were not compromised in those selected for surgery, delays and non-operations might lead to long-term reductions in survival. During current and future periods of societal restriction, the resilience of elective surgery systems requires strengthening, which might include protected elective surgical pathways and long-term investment in surge capacity for acute care during public health emergencies to protect elective staff and services. Funding National Institute for Health Research Global Health Research Unit, Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, Medtronic, Sarcoma UK, The Urology Foundation, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research.
Background Surgery is the main modality of cure for solid cancers and was prioritised to continue during COVID-19 outbreaks. This study aimed to identify immediate areas for system strengthening by comparing the delivery of elective cancer surgery during the COVID-19 pandemic in periods of lockdown versus light restriction. Methods This international, prospective, cohort study enrolled 20 006 adult (≥18 years) patients from 466 hospitals in 61 countries with 15 cancer types, who had a decision for curative surgery during the COVID-19 pandemic and were followed up until the point of surgery or cessation of follow-up (Aug 31, 2020). Average national Oxford COVID-19 Stringency Index scores were calculated to define the government response to COVID-19 for each patient for the period they awaited surgery, and classified into light restrictions (index 60). The primary outcome was the non-operation rate (defined as the proportion of patients who did not undergo planned surgery). Cox proportional-hazards regression models were used to explore the associations between lockdowns and non-operation. Intervals from diagnosis to surgery were compared across COVID-19 government response index groups. This study was registered at ClinicalTrials.gov, NCT04384926. Findings Of eligible patients awaiting surgery, 2003 (10·0%) of 20 006 did not receive surgery after a median follow-up of 23 weeks (IQR 16–30), all of whom had a COVID-19-related reason given for non-operation. Light restrictions were associated with a 0·6% non-operation rate (26 of 4521), moderate lockdowns with a 5·5% rate (201 of 3646; adjusted hazard ratio [HR] 0·81, 95% CI 0·77–0·84; p<0·0001), and full lockdowns with a 15·0% rate (1775 of 11 827; HR 0·51, 0·50–0·53; p<0·0001). In sensitivity analyses, including adjustment for SARS-CoV-2 case notification rates, moderate lockdowns (HR 0·84, 95% CI 0·80–0·88; p<0·001), and full lockdowns (0·57, 0·54–0·60; p<0·001), remained independently associated with non-operation. Surgery beyond 12 weeks from diagnosis in patients without neoadjuvant therapy increased during lockdowns (374 [9·1%] of 4521 in light restrictions, 317 [10·4%] of 3646 in moderate lockdowns, 2001 [23·8%] of 11827 in full lockdowns), although there were no differences in resectability rates observed with longer delays. Interpretation Cancer surgery systems worldwide were fragile to lockdowns, with one in seven patients who were in regions with full lockdowns not undergoing planned surgery and experiencing longer preoperative delays. Although short-term oncological outcomes were not compromised in those selected for surgery, delays and non-operations might lead to long-term reductions in survival. During current and future periods of societal restriction, the resilience of elective surgery systems requires strengthening, which might include protected elective surgical pathways and long- term investment in surge capacity for acute care during public health emergencies to protect elective staff and services. Funding National Institute for Health Research Global Health Research Unit, Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, Medtronic, Sarcoma UK, The Urology Foundation, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research.