Analysis of products from the pyrolysis of plastics waste from a printing plant: a pilot scale study
In: Studia Universitatis Babeş-Bolyai. Chemia, Band 67, Heft 4, S. 169-185
ISSN: 2065-9520
300 Ergebnisse
Sortierung:
In: Studia Universitatis Babeş-Bolyai. Chemia, Band 67, Heft 4, S. 169-185
ISSN: 2065-9520
© 2018 The Royal Society of Chemistry. Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.
BASE
Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.
BASE
Journal Article ; Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G ATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as ±1σ , reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6±0.4 GtC yr-1, ELUC 0.9±0.5 GtC yr-1, GATM 4.3±0.1 GtC yr-1, SOCEAN 2.5±0.5 GtC yr -1, and SLAND 2.8±0.8 GtC yr-1. For year 2012 alone, EFF grew to 9.7±0.5 GtC yr-1, 2.2% above 2011, reflecting a continued growing trend in these emissions, G ATM was 5.1±0.2 GtC yr-1, SOCEAN was 2.9±0.5 GtC yr-1, and assuming an ELUC of 1.0±0.5 GtC yr-1 (based on the 2001-2010 average), S LAND was 2.7±0.9 GtC yr-1. GATM was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52±0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1- 3.1 %) to 9.9±0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy.With this projection, cumulative emissions ofCO2 will reach about 535±55 GtC for 1870-2013, about 70% from EFF (390±20 GtC) and 30% from ELUC (145±50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP-2013-V2.3). © 2014 Author(s) CC Attribution 3.0 License. ; International Ocean Carbon Coordination Project (IOCCP) ; Surface Ocean Lower Atmosphere Study (SOLAS) ; Integrated Marine Biogeochemistry and Ecosystem Research program (IMBER) ; NERC ; International Opportunities Fund ; US Department of Energy, Office of Science, Biological and Environmental Research (BER) ; Norwegian Research Council ; EU FP7 for funding through projects GEOCarbon, COMBINE, CARBOCHANGE, EMBRACE, and LUC4C ; US National Science Foundation ; NASA LCLUC program ; Swiss National Science Foundation ; Joint UK DECC/Defra Met Office Hadley Centre Climate Programme ; Environment Research and Technology Development Fund (S-10) of the Ministry of Environment of Japan ; Australian Climate Change Science Program ; Leverhulme Research Fellowship
BASE
In: IIC - International Review of Intellectual Property and Competition Law, Band 49, Heft 5, S. 601-602
ISSN: 2195-0237
In: Studia Universitatis Babeş-Bolyai. Chemia, Band 68, Heft 4, S. 57-70
ISSN: 2065-9520
In: Studia Universitatis Babeş-Bolyai. Chemia, Band 62, Heft 4, S. 381-389
ISSN: 2065-9520
In: International review of intellectual property and competition law: IIC, Band 54, Heft 6, S. 952-952
ISSN: 2195-0237
In: Revue roumaine de chimie: Romanian journal of chemistry, Band 68, Heft 3-4, S. 165-171
The multilayer (10 layers) Al doped ZnO (AZO) thin films were deposited on glass substrate by sol-gel & dipping method. X-Ray diffraction measurements showed that the AZO films were polycrystalline with a hexagonal wurtzite structure. The morphological properties of the films were analyzed by atomic force microscopy showing continuous and homogeneous film, completely covering the substrates. The thickness, optical constants, optical band gap (Eg) and transmittance (T) of AZO films were assessed by spectroscopic ellipsometry on UV-vis-NIR spectral range. The AZO film has high transmittance above 80% in the visible region and the optical band-gap energy around 3.7 eV. The electrical characteristics regarding conductivity, mobility and carrier concentrations, were measured by Hall Effect measurements (van der Pauw method). The bulk carrier concentration of the AZO film with 10 layers was found to be 1.16x1019 cm-3. The vibrational bands were obtained by Raman analysis. Defects due to oxygen vacancies in the prepared AZO films were evidenced by photoluminescence spectroscopy (PL). The optical and electrical properties of the AZO thin films proved the possibility to be used in optoelectronic applications.
In: IIC - International Review of Intellectual Property and Competition Law, Band 53, Heft 4, S. 667-678
ISSN: 2195-0237
In: IIC - International Review of Intellectual Property and Competition Law, Band 53, Heft 4, S. 648-666
ISSN: 2195-0237
This is the final version of the article. Available from Springer Nature via the DOI in this record. ; Raw data were submitted to the European Genome-phenome Archive (EGA) under accession EGAS00001001077. ; X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI. ; This research was financially supported by several institutions: BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO, numbers 184.021.007 and 184.033.111); the UK Medical Research Council; Wellcome (www.wellcome.ac.uk; [grant number 102215/2/13/2 to ALSPAC]); the University of Bristol to ALSPAC; the UK Economic and Social Research Council (www.esrc.ac.uk; [ES/N000498/1] to CR); the UK Medical Research Council (www.mrc.ac.uk; grant numbers [MC_UU_12013/1, MC_UU_12013/2 to JLM, CR]); the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria; the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ; the Wellcome Trust, Medical Research Council, European Union (EU), and the National Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London.
BASE
Allergic diseases often occur early in life and persist throughout life. This life-course perspective should be considered in allergen immunotherapy. In particular it is essential to understand whether this al treatment may be used in old age adults. The current paper was developed by a working group of AIRWAYS integrated care pathways for airways diseases, the model of chronic respiratory diseases of the European Innovation Partnership on active and healthy ageing (DG CONNECT and DG Santé). It considered (1) the political background, (2) the rationale for allergen immunotherapy across the life cycle, (3) the unmet needs for the treatment, in particular in preschool children and old age adults, (4) the strategic framework and the practical approach to synergize current initiatives in allergen immunotherapy, its mechanisms and the concept of active and healthy ageing.
BASE
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10−8) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality. ; This research has been conducted using the UK Biobank Resource. The Fenland Study is supported by the UK Medical Research Council (MRC) (MC_UU_12015/1; MC_UU_12015/2; MC_UU_12015/3). EPIC-Norfolk is supported by the MRC (G401527, G1000143) and Cancer Research UK (A8257). The HCS is gratefully supported by the University of Newcastle (Australia) and the Fairfax Family Foundation. Sydney MAS is supported by the Australian National Health and Medical Research Council (NHMRC), grants ID568969, ID350833 and ID109308. Sydney MAS DNA was extracted by Genetic Repositories Australia, funded by NHMRC Enabling Grant 401184. The GEFOS Study, used as controls for the US and Jamaican athletes, was supported in part by NIH grants U01 HG004436 and P30 DK072488, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk). TwinsUK was funded by the Wellcome Trust (WT), MRC, and European Union. The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. SNP Genotyping was performed by The WT Sanger Institute and National Eye Institute via NIH/CIDR. M.McC is a WT Senior Investigator and receives support from WT 090532 and 098381. TW is the recipient of a studentship from MedImmune. Research by A. Lucia is supported by Fondo de Investigaciones Sanitarias and Fondos Feder (grant # PI15/0558). EM-M. was a recipient of a Grant-in-Aid for JSPS Fellow from the Japan Society for the Promotion of Science. This work was supported in part by grants from the Grant-in-Aid for Scientific Research (B) (15H03081 to NF) of the Japanese Ministry of Education, Culture, Sports, Science and Technology and by a grant-in-aid for scientific research (to M. Miyachi) from the Japanese Ministry of Health, Labor, and Welfare. This work was further supported by NIH grants R01 AR41398 and U24 AG051129.
BASE
In: IIC - International Review of Intellectual Property and Competition Law, Band 48, Heft 3, S. 361-362
ISSN: 2195-0237