Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.
The multilayer (10 layers) Al doped ZnO (AZO) thin films were deposited on glass substrate by sol-gel & dipping method. X-Ray diffraction measurements showed that the AZO films were polycrystalline with a hexagonal wurtzite structure. The morphological properties of the films were analyzed by atomic force microscopy showing continuous and homogeneous film, completely covering the substrates. The thickness, optical constants, optical band gap (Eg) and transmittance (T) of AZO films were assessed by spectroscopic ellipsometry on UV-vis-NIR spectral range. The AZO film has high transmittance above 80% in the visible region and the optical band-gap energy around 3.7 eV. The electrical characteristics regarding conductivity, mobility and carrier concentrations, were measured by Hall Effect measurements (van der Pauw method). The bulk carrier concentration of the AZO film with 10 layers was found to be 1.16x1019 cm-3. The vibrational bands were obtained by Raman analysis. Defects due to oxygen vacancies in the prepared AZO films were evidenced by photoluminescence spectroscopy (PL). The optical and electrical properties of the AZO thin films proved the possibility to be used in optoelectronic applications.
This is the final version of the article. Available from Springer Nature via the DOI in this record. ; Raw data were submitted to the European Genome-phenome Archive (EGA) under accession EGAS00001001077. ; X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI. ; This research was financially supported by several institutions: BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO, numbers 184.021.007 and 184.033.111); the UK Medical Research Council; Wellcome (www.wellcome.ac.uk; [grant number 102215/2/13/2 to ALSPAC]); the University of Bristol to ALSPAC; the UK Economic and Social Research Council (www.esrc.ac.uk; [ES/N000498/1] to CR); the UK Medical Research Council (www.mrc.ac.uk; grant numbers [MC_UU_12013/1, MC_UU_12013/2 to JLM, CR]); the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria; the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ; the Wellcome Trust, Medical Research Council, European Union (EU), and the National Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London.
Allergic diseases often occur early in life and persist throughout life. This life-course perspective should be considered in allergen immunotherapy. In particular it is essential to understand whether this al treatment may be used in old age adults. The current paper was developed by a working group of AIRWAYS integrated care pathways for airways diseases, the model of chronic respiratory diseases of the European Innovation Partnership on active and healthy ageing (DG CONNECT and DG Santé). It considered (1) the political background, (2) the rationale for allergen immunotherapy across the life cycle, (3) the unmet needs for the treatment, in particular in preschool children and old age adults, (4) the strategic framework and the practical approach to synergize current initiatives in allergen immunotherapy, its mechanisms and the concept of active and healthy ageing.
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10−8) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality. ; This research has been conducted using the UK Biobank Resource. The Fenland Study is supported by the UK Medical Research Council (MRC) (MC_UU_12015/1; MC_UU_12015/2; MC_UU_12015/3). EPIC-Norfolk is supported by the MRC (G401527, G1000143) and Cancer Research UK (A8257). The HCS is gratefully supported by the University of Newcastle (Australia) and the Fairfax Family Foundation. Sydney MAS is supported by the Australian National Health and Medical Research Council (NHMRC), grants ID568969, ID350833 and ID109308. Sydney MAS DNA was extracted by Genetic Repositories Australia, funded by NHMRC Enabling Grant 401184. The GEFOS Study, used as controls for the US and Jamaican athletes, was supported in part by NIH grants U01 HG004436 and P30 DK072488, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk). TwinsUK was funded by the Wellcome Trust (WT), MRC, and European Union. The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. SNP Genotyping was performed by The WT Sanger Institute and National Eye Institute via NIH/CIDR. M.McC is a WT Senior Investigator and receives support from WT 090532 and 098381. TW is the recipient of a studentship from MedImmune. Research by A. Lucia is supported by Fondo de Investigaciones Sanitarias and Fondos Feder (grant # PI15/0558). EM-M. was a recipient of a Grant-in-Aid for JSPS Fellow from the Japan Society for the Promotion of Science. This work was supported in part by grants from the Grant-in-Aid for Scientific Research (B) (15H03081 to NF) of the Japanese Ministry of Education, Culture, Sports, Science and Technology and by a grant-in-aid for scientific research (to M. Miyachi) from the Japanese Ministry of Health, Labor, and Welfare. This work was further supported by NIH grants R01 AR41398 and U24 AG051129.
Background: Community health workers (CHW) can screen for cardiovascular disease risk as well as health professionals using a noninvasive screening tool. However, this demonstrated success does not guarantee effective scaling of the intervention to a population level.Objectives: This study sought to report lessons learned from supervisors' experiences monitoring CHW and perceptions of other stakeholders regarding features for successful scaling of interventions that incorporate task-sharing with CHW.Methods: We conducted a qualitative analysis of in-depth interviews to explore stakeholder perceptions. Data was collected through interviews of 36 supervisors and administrators at nongovernmental organizations contracted to deliver and manage primary care services using CHW, directors, and staff at the government health care clinics, and officials from the departments of health responsible for the implementation of health policy.Results: CHW are recognized for their value in offsetting severe human resource shortages and for their expert community knowledge. There is a lack of clear definitions for roles, expectations, and career paths for CHW. Formal evaluation and supervisory systems are highly desirable but nonexistent or poorly implemented, creating a critical deficit for effective implementation of programs using task-sharing. There is acknowledgment of environmental challenges (e.g., safety) and systemic challenges (e.g., respect from trained health professionals) that hamper the effectiveness of CHW. The government-community relationships presumed to form the basis of redesigned health care services have to be supported more explicitly and consistently on both sides in order to increase the acceptability of CHW and their effectiveness.Conclusions: The criteria critical for successful scaling of CHW-led screening are consistent with evidence for scaling-up communicable disease programs. Policy makers have to commit appropriate levels of resources and political will to ensure successful scaling of this intervention.HighlightsWe surveyed stakeholders about effective integration of community health workers into primary care teams.Critical issues were effective training, evaluation tools, and clear career paths.Strong political will and sufficient resource allocation were identified as critical for success.
This is the final version of the article. Available from the publisher via the DOI in this record. ; The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. Highprofile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT-V3-GRID. ; Research vessel Tiglax in Columbia Bay, Alaska, is shown on the website for SOCAT version 3. The Columbia Glacier can be seen at the head of the bay, as well as calved ice from the glacier. The photo was taken by Wiley Evans. Pete Brown (National Oceanography Centre Southampton, UK) designed the SOCAT logo. IOCCP (via a US National Science Foundation grant (OCE-124 3377) to the Scientific Committee on Oceanic Research), IOC-UNESCO (International Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization), SOLAS and IMBER provided travel and meeting support. Funding was received from the University of East Anglia (UK), the Bjerknes Centre for Climate Research (Norway), the Geophysical Institute at the University of Bergen (Norway) and the University of Washington (US). The US National Oceanic and Atmospheric Administration (NOAA) made important financial contributions via the Climate Observation Division of the Climate Program Office, the NOAA Ocean Acidification Program, the NOAA Pacific Marine Environmental Laboratory (PMEL), the NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) and the NOAA Earth System Research Laboratory. Funding was also received from Oak Ridge National Laboratory (US), PANGAEA® Data Publisher for Earth and Environmental Science (Germany), the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Germany), the Antarctic Climate and Ecosystems Cooperative Research Centre (Australia), the National Institute for Environmental Studies (Japan) and Uni Research (Norway). Research projects making SOCAT possible included the European Union projects CarboChange (FP7 264879), GEOCARBON (FP7 283080) and AtlantOS (633211), the UK Ocean Acidification Research Programme (NE/H017046/1; funded by the Natural Environment Research Council (NERC) and the Departments for Energy and Climate Change and for Environment, Food and Rural Affairs (Defra)) and the UK Shelf Sea Biogeochemistry Blue Carbon project (NE/K00168X/1; funded by NERC and Defra). Numerous government and funding agencies financially supported SOCAT, notably the Australian International Marine Observing System, the U.S. Geological Survey, the National Aeronautics and Space Administration (NASA) (US), the European Space Agency, the German Federal Ministry of Education and Research (BMBF projects 01LK1224J, 01LK1101C, 01LK1101E, ICOS-D), the Japanese Ministry of the Environment, the Royal Society of New Zealand via the New Zealand–Germany Science and Technology Programme, the Norwegian Research Council (SNACS, 229752), the Swedish Research Council (project 2004-4034) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas, project 2004- 797). This is PMEL contribution number 4441. Finally, we thank the two anonymous reviewers for their thoughtful, constructive and insightful reviews