Aufsatz(elektronisch)2013

Comparing Discrete Distributions: Survey Validation and Survey Experiments

In: Political analysis: PA ; the official journal of the Society for Political Methodology and the Political Methodology Section of the American Political Science Association, Band 21, Heft 1, S. 70-85

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolmogorov—Smirnov (KS) test, as simple devices for comparing and analyzing ordered responses typically found in surveys. In Monte Carlo simulations, we find the discrete KS test to have more power than the chi-square test when distributions are right or left skewed, regardless of the sample size or the number of alternatives. The discrete KS test has at least as much power as the chi-square, and sometimes more so, when distributions are bi-modal or approximately uniform and samples are small. After deriving rules of usage for the two tests, we implement them in two cases typical of survey analysis. Using our own data collected after Hurricanes Katrina and Rita, we employ our rules to both validate and assess treatment effects in a natural experimental setting.

Sprachen

Englisch

Verlag

Cambridge University Press (CUP)

ISSN: 1476-4989

DOI

10.1093/pan/mps036

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.