Aufsatz(elektronisch)10. März 2022
A maximum theorem for generalized convex functions
In: Studia Universitatis Babeş-Bolyai. Mathematica, Band 67, Heft 1, S. 21-29
Verfügbarkeit an Ihrem Standort wird überprüft
Dieser Artikel ist auch in Ihrer Bibliothek verfügbar: |
elektronisch
gedruckt
Abstract
Motivated by the Maximum Theorem for convex functions (in the setting of linear spaces) and for subadditive functions (in the setting of Abelian semigroups), we establish a Maximum Theorem for the class of generalized convex functions, i.e., for functions $f:X\to\R$ that satisfy the inequality $f(x\circ y)\leq pf(x)+qf(y)$, where $\circ$ is a binary operation on $X$ and $p,q$ are positive constants. As an application, we also obtain an extension of the Karush--Kuhn--Tucker theorem for this class of functions.
Problem melden