Aufsatz(elektronisch)10. September 2024

Automated Translation of Chronic Disease Diagnosis Codes using the ChatGPT Large Language Model

In: International journal of population data science: (IJPDS), Band 9, Heft 5

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

BackgroundThe International Classification of Diseases (ICD) is revised over time and there are region-specific versions, including ICD-10-CA (Canada) and ICD-9-CM (USA). Studies spanning multiple ICD versions require crosswalks to translate diagnosis codes across versions, but manual crosswalk development is costly and requires clinical expertise.
ObjectiveTo evaluate the accuracy of a pre-trained large language model (LLM) to automatically translate chronic disease diagnosis codes from ICD-10-CA to ICD-9-CM.
ApproachEight prompts were developed to instruct the OpenAI Generative Pre-trained Transformer 4 (GPT-4) LLM to translate 1,272 ICD-10-CA codes for the Elixhauser Comorbidity Index to ICD-9-CM. Prompt accuracy (%) was measured against a crosswalk developed by the Canadian Institute of Health Information. Variability was assessed by replicating each prompt three times. Mean accuracy ± standard deviation was reported for each prompt across replications, for both five-digit and truncated three-digit codes.
ResultsThe highest prompt performance was observed when assigning a persona of a medical coding specialist (40.8% ± 0.9%), requesting justification for the selected code (41.4% ± 1.1%), and providing diagnosis code labels (47.5% ± 0.7%). For truncated three-digit codes, these prompts achieved accuracy of 82.0% ± 0.5%, 80.8% ± 0.9%, and 82.7% ± 0.1%, respectively. Combining these three prompting techniques marginally improved accuracy to 48.6% ± 0.7% for five-digit codes and 84.3% ± 0.2% for truncated three-digit codes.
ConclusionGeneral-purpose LLMs are currently not sufficiently accurate at automating ICD code translation for chronic diseases.
ImplicationsAdditional experiments with fine-tuning, task-specific training, and prompt engineering are needed to improve accuracy and reduce variability.

Verlag

Swansea University

ISSN: 2399-4908

DOI

10.23889/ijpds.v9i5.2759

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.