Aufsatz(elektronisch)28. Februar 2022

Orthonormal polynomial projection quantization: an algebraic eigenenergy bounding method

In: Acta polytechnica: journal of advanced engineering, Band 62, Heft 1, S. 63-79

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

The ability to generate tight eigenenergy bounds for low dimension bosonic or ferminonic, hermitian or non-hermitian, Schrödinger operator problems is an important objective in the computation of quantum systems. Very few methods can simultaneously generate lower and upper bounds. One of these is the Eigenvalue Moment Method (EMM) originally introduced by Handy and Besssis, exploiting the use of semidefinite programming/nonlinear-convex optimization (SDP) techniques as applied to the positivity properties of the multidimensional bosonic ground state for a large class of important physical systems (i.e. those admitting a moments' representation). A recent breakthrough has been achieved through another, simpler, moment representation based quantization formalism, the Orthonormal Polynomial Projection Quantization Bounding Method (OPPQ-BM). It is purely algebraic and does not require any SDP analysis. We discuss its essential structure in the context of several one dimensional examples.

Verlag

Czech Technical University in Prague - Central Library

ISSN: 1805-2363

DOI

10.14311/ap.2022.62.0063

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.