Aufsatz(elektronisch)September 1988

EXPECTATIONS, LEARNING AND THE KALMAN FILTER

In: The Manchester School, Band 56, Heft 3, S. 223-246

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

SummaryOur final comments can be relatively brief. In assessing the empirical importance of expectations variables in macroeconomic behavioural equations, a variety of "expectations models" should be used. To date, the Muth‐rational expectations approach has dominated the empirical literature. A major drawback, however, is the lack of an explicit optimal learning process by agents. We have attempted to remedy this by bringing together various diverse strands in the expectations, statistics and engineering literature to formalize models that embody "optimal information extraction" by agents faced with a stochastic environment. The Khan filter provides a unified method of approaching these problems and in this paper we presented the Kalman filter in terms of the usual least squares approach familiar to applied economists. Relatively inexpensive econometric software which utilizes recursive estimation techniques has recently become available. It is hoped that this paper has provided a framework favourable to its use by applied economists particularly in investigating the role of expectations variables in economic models.

Sprachen

Englisch

Verlag

Wiley

ISSN: 1467-9957

DOI

10.1111/j.1467-9957.1988.tb01330.x

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.