Aufsatz(elektronisch)19. Mai 2023

Nonlocal Kondo effect and two-fluid picture revealed in an exactly solvable model

In: PNAS nexus, Band 2, Heft 6

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

Abstract
Understanding the nature of local–itinerant transition of strongly correlated electrons is one of the central problems in condensed matter physics. Heavy fermion systems describe the f-electron delocalization through Kondo interactions with conduction electrons. Tremendous efforts have been devoted to the so-called Kondo-destruction scenario, which predicts a dramatic local-to-itinerant quantum phase transition of f-electrons at zero temperature. On the other hand, two-fluid behaviors have been observed in many materials, suggesting coexistence of local and itinerant f-electrons over a broad temperature range but lacking a microscopic theoretical description. To elucidate this fundamental issue, here we propose an exactly solvable Kondo-Heisenberg model in which the spins are defined in the momentum space and the k-space Kondo interaction corresponds to a highly nonlocal spin scattering in the coordinate space. Its solution reveals a continuous evolution of the Fermi surfaces with Kondo interaction and two-fluid behaviors similar to those observed in real materials. The electron density violates the usual Luttinger's theorem, but follows a generalized one allowing for partially enlarged Fermi surfaces due to partial Kondo screening in the momentum space. Our results highlight the consequence of nonlocal Kondo interaction relevant for strong quantum fluctuation regions and provide important insight into the microscopic description of two-fluid phenomenology in heavy fermion systems.

Sprachen

Englisch

Verlag

Oxford University Press (OUP)

ISSN: 2752-6542

DOI

10.1093/pnasnexus/pgad169

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.