Aufsatz(elektronisch)2018

Estimating macropod grazing density and defining activity patterns using camera-trap image analysis

In: Wildlife research, Band 45, Heft 8, S. 706

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

Context
When measuring grazing impacts of vertebrates, the density of animals and time spent foraging are important. Traditionally, dung pellet counts are used to index macropod grazing density, and a direct relationship between herbivore density and foraging impact is assumed. However, rarely are pellet deposition rates measured or compared with camera-trap indices.

Aims
The aims were to pilot an efficient and reliable camera-trapping method for monitoring macropod grazing density and activity patterns, and to contrast pellet counts with macropod counts from camera trapping, for estimating macropod grazing density.

Methods
Camera traps were deployed on stratified plots in a fenced enclosure containing a captive macropod population and the experiment was repeated in the same season in the following year after population reduction. Camera-based macropod counts were compared with pellet counts and pellet deposition rates were estimated using both datasets. Macropod frequency was estimated, activity patterns developed, and the variability between resting and grazing plots and the two estimates of macropod density was investigated.

Key Results
Camera-trap grazing density indices initially correlated well with pellet count indices (r2=0.86), but were less reliable between years. Site stratification enabled a significant relationship to be identified between camera-trap counts and pellet counts in grazing plots. Camera-trap indices were consistent for estimating grazing density in both surveys but were not useful for estimating absolute abundance in this study.

Conclusions
Camera trapping was efficient and reliable for estimating macropod activity patterns. Although significant, the relationship between pellet count indices and macropod grazing density based on camera-trapping indices was not strong; this was due to variability in macropod pellet deposition rates over different years. Time-lapse camera imagery has potential for simultaneously assessing herbivore foraging activity budgets with grazing densities and vegetation change. Further work is required to refine the use of camera-trapping indices for estimation of absolute abundance.

Implications
Time-lapse camera trapping and site-stratified sampling allow concurrent assessment of grazing density and grazing behaviour at plot and landscape scale.

Sprachen

Englisch

Verlag

CSIRO Publishing

ISSN: 1448-5494, 1035-3712

DOI

10.1071/wr17162

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.