Aufsatz(elektronisch)1. Dezember 2003

The Rank-Size Rule and Fractal Hierarchies of Cities: Mathematical Models and Empirical Analyses

In: Environment and planning. B, Planning and design, Band 30, Heft 6, S. 799-818

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

This paper contributes to the demonstration that the self-similar city hierarchies with cascade structure can be modeled with a pair of scaling laws reflecting the recursive process of urban systems. First we transform the Beckmann's model on city hierarchies and generalize Davis's 2 n -rule to an rn-rule on the size – number relationship of cities ( r > 1), and then reduce both Beckmann's and Davis's models to a pair of scaling laws taking the form of exponentials. Then we derive an exact three-parameter Zipf-type model from the scaling laws to revise the commonly used two-parameter Zipf model. By doing so, we reveal the fractal essence of central place hierarchies and link the rank-size rule to central place model logically. The new mathematical frameworks are applied to the class counts of the 1950–70 world city hierarchy presented by Davis in 1978, and several alternative approaches are illustrated to estimate the fractal dimension.

Sprachen

Englisch

Verlag

SAGE Publications

ISSN: 1472-3417

DOI

10.1068/b2948

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.