Aufsatz(elektronisch)23. Mai 2023

VOC species controlling O3 formation in ambient air and their sources in Kaifeng, China

In: Environmental science and pollution research: ESPR, Band 30, Heft 30, S. 75439-75453

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

Abstract
The concentration of ozone has been in a rising crescendo in the last decade while the fine particles (PM2.5) is gradually decreasing but still at a high level in central China. Volatile organic compounds (VOCs) are the vital precursors of ozone and PM2.5. A total of 101 VOC species were measured in four seasons at five sites from 2019 to 2021 in Kaifeng. VOC sources and geographic origin of sources were identified by the positive matrix factorization (PMF) model and the hybrid single-particle Lagrangian integrated trajectory transport model. The source-specific OH loss rates (LOH) and ozone formation potential (OFP) were calculated to estimate the effects of each VOC source. The average mixing ratios of total VOCs (TVOC) were 43.15 parts per billion (ppb), of which the alkanes, alkenes, aromatics, halocarbons, and oxygenated VOCs respectively accounted for 49%, 12%, 11%, 14%, and 14%. Although the mixing ratios of alkenes were comparatively low, they played a dominant role in the LOH and OFP, especially ethene (0.55 s−1, 7%; 27.11 μg/m3, 10%) and 1,3-butadiene (0.74 s−1, 10%; 12.52 μg/m3, 5%). The vehicle-related source which emitted considerable alkenes ranked as the foremost contributing factor (21%). Biomass burning was probably influenced by other cities in the western and southern Henan and other provinces, Shandong and Hebei.

Sprachen

Englisch

Verlag

Springer Science and Business Media LLC

ISSN: 1614-7499

DOI

10.1007/s11356-023-27595-w

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.