Market impact of government communication: The case of presidential tweets
Abstract
We propose the "President reacts to news" channel of stock returns by studying the financial market impact of the Twitter account of the 45th president of the United States, Donald Trump. We use machine learning algorithms to classify topic and textual sentiment of 1,400 economy-related tweets to investigate whether they contain relevant information for financial markets. Analyzing high-frequency data, we find that after controlling for past market movements, most tweets are reactive and predictable, rather than novel and informative. The exceptions are tweet topics where the president has direct policy authority and his negative sentiment could adversely a↵ect economic outcomes. ; September 27, 2021
Zitationen
Wir haben bei OpenAlex eine Zitation für Sie gefunden.
Wir haben bei OpenAlex Zitationen für Sie gefunden.
Referenzen
Wir haben bei OpenAlex eine Referenz für Sie gefunden.
Wir haben bei OpenAlex Referenzen für Sie gefunden.
Themen
Sprachen
Englisch
Verlag
Frankfurt a. M.: Leibniz Institute for Financial Research SAFE
DOI
Eintrag zu einer Literaturliste hinzufügen
Problem melden