Process and environmental simulation in the validation of the biotechnological production of nisin from waste
Abstract
Chemical and heat treatments are traditionally used to preserve the quality of food products. An alternative is based on the use of antimicrobials such as nisin to ensure food safety. Traditionally, nisin is produced by microbial fermentation in the exponential growth phase of Lactococcus lactis, which is a recognized starter culture in dairy products. However, its production process entails a high cost compared to its chemical-based counterparts, which reduces its competitiveness in the market. This study addresses the economic feasibility and environmental impacts of biotechnological co-production of nisin and lactic acid from three food-associated industrial waste streams: cheese whey (CW), sugar beet pulp (SBP) and corn stover (CS). To carry out the conceptual design of a process at an early stage of development, SuperPro Designer® is used as simulation tool for developing the process alternatives within an industrial approach. Life Cycle Assessment (LCA) methodology will be applied to identify the main environmental impacts associated with the production process. Based on the economic and environmental evaluation, SBP proved to be the best carbon source for the nisin production process, followed by CW. Regarding CS, this alternative should overcome the drawbacks associated with enzyme consumption and limited nisin production yield ; This research has been financially supported by the European project iFermenter (Grant Agreement 79057. Ifermenter is a project funded under the "Bio-Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme". The authors belong to the Galician Competitive Research Group (GRC ED431C 2017/29) and to the Cross-disciplinary Research in Environmental Technologies (CRETUS Research Center, ED431E 2018/01) ; SI
Problem melden