Vibrational study of HgGa2S4 under high pressure
Abstract
In this work, we report on high-pressure Raman scattering measurements in mercury digallium sulfide (HgGa2S4) with defect chalcopyrite structure that have been complemented with lattice dynamics ab initio calculations. Our measurements evidence that this semiconductor exhibits a pressure-induced phase transition from the completely ordered defect chalcopyrite structure to a partially disordered defect stannite structure above 18 GPa which is prior to the transition to the completely disordered rocksalt phase above 23 GPa. Furthermore, a completely disordered zincblende phase is observed below 5 GPa after decreasing pressure from 25 GPa. The disordered zincblende phase undergoes a reversible pressure-induced phase transition to the disordered rocksalt phase above 18 GPa. The sequence of phase transitions here reported for HgGa2S4 evidence the existence of an intermediate phase with partial cation-vacancy disorder between the ordered defect chalcopyrite and the disordered rocksalt phases and the irreversibility of the pressure-induced order-disorder processes occurring in ordered-vacancy compounds. The pressure dependence of the Raman modes of all phases, except the Raman-inactive disordered rocksalt phase, have been measured and discussed. ; This study was supported by the Spanish government MEC under Grant No: MAT2010-21270-C04-01/03/04, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). E. P.-G., P. R.-H., and A. M. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.A.S. acknowledges Juan de la Cierva fellowship program for his financial support. ; Vilaplana Cerda, RI.; Robledillo, M.; Gomis Hilario, O.; Sans, J.; Manjón Herrera, FJ.; Pérez-González, E.; Rodríguez-Hernández, P. (2013). Vibrational study of HgGa2S4 under high pressure. Journal of Applied Physics. 113(9):935121-9351210. ...
Problem melden