Open Access BASE2020

Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces

Abstract

[EN] We consider rational surfaces Z defined by divisorial valuations ¿ of Hirzebruch surfaces. We introduce concepts of non-positivity and negativity at infinity for these valuations and prove that these concepts admit nice local and global equivalent conditions. In particular we prove that, when ¿ is non-positive at infinity, the extremal rays of the cone of curves of Z can be explicitly given ; Partially supported by the Spanish Government Ministerio de Economia, Industria y Competitividad (MINECO), Grants MTM2015-65764-C3-2-P, MTM2016-81735-REDT, PGC2018-096446-B-C22 and BES-2016-076314, as well as by Universitat Jaume I, Grant UJI-B2018-10. ; Galindo, C.; Monserrat Delpalillo, FJ.; Moreno-Ávila, C. (2020). Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces. Revista Matemática Complutense. 33(2):349-372. https://doi.org/10.1007/s13163-019-00319-w ; S ; 349 ; 372 ; 33 ; 2 ; Abhyankar, S.S., Moh, T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II. J. Reine Angew. Math. 260, 47–83 (1973). ibid. 261 (1973), 29–54 ; Beauville, A.: Complex Algebraic Surfaces. London Mathematical Society Student Texts, vol. 34, 2nd edn. Cambridge University Press, Cambridge (1996) ; Campillo, A.: Algebroid Curves in Positive Characteristic. Lecture Notes in Mathematics, vol. 613. Springer, Berlin (1980) ; Campillo, A., Piltant, O., Reguera, A.: Curves and divisors on surfaces associated to plane curves with one place at infinity. Proc. Lond. Math. Soc. 84, 559–580 (2002) ; Casas-Alvero, E.: Singularities of Plane Curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000) ; Ciliberto, C., Farnik, M., Küronya, A., Lozovanu, V., Roé, J., Shramov, C.: Newton–Okounkov bodies sprouting on the valuative tree. Rend. Circ. Mat. Palermo 2(66), 161–194 (2017) ; Cutkosky, S.D., Ein, L., Lazarsfeld, R.: Positivity and complexity of ideal sheaves. Math. Ann. 321(2), 213–234 (2001) ; de la Rosa-Navarro, B.L., Frías-Medina, J.B., ...

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.