Open Access BASE2017

Triangles in the graph of conjugacy classes of normal subgroups

Abstract

[EN] Let G be a finite group and N a normal subgroup of G. We determine the structure of N when the graph G(N), which is the graph associated to the conjugacy classes of G contained in N, has no triangles and when the graph consists in exactly one triangle. ; The research of the first and second authors is supported by the Valencian Government, Proyecto PROMETEOII/2015/011. The first and the third authors are also partially supported by Universitat Jaume I, Grant P11B2015-77. ; Beltrán, A.; Felipe Román, MJ.; Melchor, C. (2017). Triangles in the graph of conjugacy classes of normal subgroups. Monatshefte für Mathematik. 182(1):5-21. https://doi.org/10.1007/S00605-015-0866-9 ; S ; 5 ; 21 ; 182 ; 1 ; Bertram, E.A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups. Bull. London Math. Soc. 22(6), 569-575 (1990) ; Beltrán, A., Felipe, M.J., Melchor, C.: Graphs associated to conjugacy classes of normal subgroups in finite groups. J. Algebra 443, 335-348 (2015) ; Camina, A.R.: Arithmetical conditions on the conjugacy class numbers of a finite group. J. London Math. Soc. 2(5), 127-132 (1972) ; Deaconescu, M.: Classification of finite groups with all elements of prime order. Proc. Am. Math. Soc. 106(3), 625-629 (1989) ; Doerk, K., Hawkes, T.: Finite soluble groups. de Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin (1992) ; Fang, M., Zhang, P.: Finite groups with graphs containing no triangles. J. Algebra 264(2), 613-619 (2003) ; Higman, G.: Finite groups in which every element has prime power order. J. London Math. Soc. 32, 335-342 (1957) ; Manz, O., Wolf, T.R.: Representations of solvable groups. Cambridge Univ. Press, Cambridge (1993) ; Riese, U., Shahabi, M.A.: Subgroups which are the union of four conjugacy classes. Commun. Algebra 29(2), 695-701 (2001) ; Shahryari, M., Shahabi, M.A.: Subgroups which are the union of three conjugate classes. J. Algebra 207(1), 326-332 (1998) ; The GAP Group.: GAP–groups, algorithms and programming, Vers. 4.4.12. (2008). ...

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.