Open Access BASE2015

Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers

Abstract

Thin film organic lasers represent a new generation of inexpensive, mechanically flexible devices for spectroscopy, optical communications and sensing. For this purpose, it is desired to develop highly efficient, stable, wavelength-tunable and solution-processable organic laser materials. Here we report that carbon-bridged oligo(p-phenylenevinylene)s serve as optimal materials combining all these properties simultaneously at the level required for applications by demonstrating amplified spontaneous emission and distributed feedback laser devices. A series of six compounds, with the repeating unit from 1 to 6, doped into polystyrene films undergo amplified spontaneous emission from 385 to 585 nm with remarkably low threshold and high net gain coefficients, as well as high photostability. The fabricated lasers show narrow linewidth (105 pump pulses for oligomers with three to six repeating units) and wavelength tunability across the visible spectrum (408–591 nm). ; The work in Spain was supported by the Spanish Government (MINECO) and the European Community (FEDER) through grant nos. MAT-2011–28167-C02-01 and CTQ2012-33733 and from the Junta de Andalucía through research project P09-FQM-4708. M.M.-V. has been partly supported by a MINECO FPI fellowship (no. BES-2009-020747). Dr Merino and Dr Retolaza, at Tekniker (Spain), are acknowledged for supplying the NIL fabricated resonators. We also thank I. Garcés for technical assistance. The work in Tokyo was supported by MEXT, Japan (for KAKENHI 15H05754 to E.N. and JST-PRESTO 'New Materials Science and Element Strategy' to H.T.).

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.