Open Access BASE2019

Recent Progress on Antimonene: A New Bidimensional Material

Abstract

This is the peer reviewed version of the following article: Ares, P., Palacios, J. J., Abellán, G., Gómez‐Herrero, J., & Zamora, F. Recent progress on antimonene: a new bidimensional materiaAdvanced Materials 30.2 (2018): 1703771, which has been published in final form at https://doi.org/10.1002/adma.201703771. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions ; Antimonene, defined in sensu stricto as a single layer of antimony atoms, is recently the focus of numerous theoretical works predicting a variety of interesting properties and is quickly attracting the attention of the scientific community. However, what places antimonene in a different category from other 2D crystals is its strong spin–orbit coupling and a drastic evolution of its properties from the monolayer to the few-layer system. The recent isolation of this novel 2D material pushes the interest for antimonene even further. Here, a review of both theoretical predictions and experimental results is compiled. First, an account of the calculations anticipating an electronic band structure suitable for optoelectronics and thermoelectric applications in monolayer form and a topological semimetal in few-layer form is given. Second, the different approaches to produce antimonene—mechanical and liquid phase exfoliation, and epitaxial growth methods—are reviewed. In addition, this work also reports the main characterization techniques used to study this exotic material. This review provides insights for further exploring the appealing properties of antimonene and puts forward the opportunities and challenges for future applications from (opto)electronic device fabrication to biomedic ; The authors thank financial support from the Spanish Ministerio de Economía y Competitividad through the "María de Maeztu" Programme for Units of Excellence in R&D (MDM‐2014‐0377) and the projects MAT2016‐77608‐C3‐1‐P and ‐C3‐3‐P, and FIS2016‐80434‐P. The authors also acknowledge the European Union structural funds and the Comunidad de Madrid under grant MAD2D No. S2013/MIT‐3007, the Generalitat Valenciana under grant No. PROMETEO/2012/011, and the Fundación Ramón Areces. The research leading to these results was partially funded by the European Union Seventh Framework Programme under grant agreement No. 604391 Graphene Flagship. The authors thank the Deutsche Forschungsgemeinschaft (DFG‐SFB 953 "Synthetic Carbon Allotropes," Project A1) for financial support. G.A. thanks the FAU for the Emerging Talents Initiative (ETI) grant #WS16‐17_Nat_04

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.