Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment
Abstract
Journal of High Energy Physics 2016.1 (2016): 064 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA) ; Artículo escrito por un elevado número de autores, sólo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiera, y los autores pertenecientes a la UAM ; The cross-section for the production of a single top quark in association with a W boson in proton-proton collisions at √ s = 8 TeV is measured. The dataset corresponds to an integrated luminosity of 20.3 fb−1, collected by the ATLAS detector in 2012 at the Large Hadron Collider at CERN. Events containing two leptons and one central b-jet are selected. The W t signal is separated from the backgrounds using boosted decision trees, each of which combines a number of discriminating variables into one classifier. Production of W t events is observed with a significance of 7.7σ. The cross-section is extracted in a profile likelihood fit to the classifier output distributions. The W t cross-section, inclusive of decay modes, is measured to be 23.0±1.3(stat.) +3.2 −3.5 (syst.) ±1.1(lumi.) pb. The measured cross-section is used to extract a value for the CKM matrix element |Vtb| of 1.01 ± 0.10 and a lower limit of 0.80 at the 95% confidence level. The cross-section for the production of a top quark and a W boson is also measured in a fiducial acceptance requiring two leptons with pT > 25 GeV and |η| 20 GeV and |η| 20 GeV, including both W t and top-quark pair events as signal. The measured value of the fiducial cross-section is 0.85 ± 0.01(stat.) +0.06 −0.07(syst.) ±0.03(lumi.) pb ; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom
Problem melden