Controlling the gain contribution of background emitters in few-quantum-dot microlasers
Abstract
Funding: European Research Council under the European Union's Seventh Framework ERC Grant Agreement No. 615613; German Research Foundation via Grant-No.: Re2974/10-1, Gi1121/1-1. ; We provide experimental and theoretical insight into single-emitter lasing effects in a quantum dot (QD)-microlaser under controlled variation of background gain provided by off-resonant discrete gain centers. For that purpose, we apply an advanced two-color excitation concept where the background gain contribution of off-resonant QDs can be continuously tuned by precisely balancing the relative excitation power of two lasers emitting at different wavelengths. In this way, by selectively exciting a singleresonant QD and off-resonant QDs, we identify distinct single-QD signatures in the lasing characteristics and distinguish between gain contributions of a single resonant emitter and a countable number of offresonant background emitters to the optical output of the microlaser. Our work addresses the importantquestion whether single-QD lasing is feasible in experimentally accessible systems and shows that, for the investigated microlaser, the single-QD gain needs to be supported by the background gain contribution ofoff-resonant QDs to reach the transition to lasing. Interestingly, while a single QD cannot drive the investigated micropillar into lasing, its relative contribution to the emission can be as high as 70% and it dominates the statistics of emitted photons in the intermediate excitation regime below threshold. ; Publisher PDF ; Peer reviewed
Problem melden