Swarm Learning for decentralized and confidential clinical machine learning
Abstract
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2 . Patients with leukaemia can be identifed using machine learning on the basis of their blood transcriptomes3 . However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5 . Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confdentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifers outperform those developed at individual sites. In addition, Swarm Learning completely fulfls local confdentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.
Problem melden