Open Access BASE2019

Ab-initio modeling and experimental investigation of properties of ultra-high temperature solid solutions TaxZr1-xC

Abstract

Due to their high melting temperature, high-temperature oxidation resistance and outstanding mechanical properties, TaxZr1-xC solid solutions are promising ultra-high temperature ceramics (UHTC). However, accelerated knowledge-based development of UHTCs solid solutions requires reliable data regarding the properties of the solution phases in the whole interval of concentrations. At present, there are contradictory reports regarding the existence of the miscibility gap in Ta-Zr-C system at temperatures below 900 degrees C. In this work, we carry out ab-initio calculations of the thermodynamic properties of TaxZr1-xC alloys and demonstrate that the solid solutions should not decompose into TaC and ZrC end member compounds. We synthesize single-phase samples of TaxZr1-xC with compositions x = 0.9, 0.8, 0.6, and 0.3 by self-propagating high-temperature synthesis (SHS) and anneal the samples for 40 h. We do not observe any sign of the decomposition of the solid solution during the annealing, corroborating the conclusions obtained by theoretical simulations. (C) 2018 Elsevier B.V. All rights reserved. ; Funding Agencies|Ministry of Education and Science of the Russian Federation [14.Y26.31.0005, K2-2017-080]; Russian Science Foundation [17-79-10173]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]

Sprachen

Englisch

Verlag

Linköpings universitet, Teoretisk Fysik; Linköpings universitet, Tekniska fakulteten; Natl Univ Sci and Technol MISIS, Russia; Natl Univ Sci and Technol MISIS, Russia; Russian Acad Sci, Russia; ELSEVIER SCIENCE SA

DOI

10.1016/j.jallcom.2018.11.219

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.