Open Access BASE2013

Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS -diurnal variations and PMF receptor modelling

Abstract

Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary nonexhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27 %, biomass burning (K) - 5 %, sea salt (Na- Mg) - 17 %), three types of dust aerosols (soil dust (Al-Ti) - 17 %, urban crustal dust (Ca) - 6 %, and primary traffic non-exhaust brake dust (Fe-Cu) - 7 %), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17 %, industrial smelters (Zn-Mn) - 3 %, and industrial combustion (Pb-Cl) - 5 %, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with combustion emissions) is found to be the major (82 %) source of fine Cl in the urban agglomerate; (4) the mean diurnal variation of PM 2.5 primary traffic non-exhaust brake dust (Fe-Cu) suggests that this source is mainly emitted and not resuspended, whereas PM2.5 urban dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing urban dust concentrations. © Author(s) 2013. ; FP7-PEOPLE-2009-IEF, Project number 254773, SAPUSS – Solving 25 Aerosol Problems Using Synergistic Strategies (Marie Curie Actions – Intra European Fellow- ships. Mr. Manuel Dall'Osto). This study was previously supported by research projects from the D.G. de Calidad y Evaluacion Ambiental (Spanish Ministry of the Environment) and the Plan Nacional de I + D (Spanish Ministry of Science and Innovation [CGL2010-19464 (VAMOS) andCSD2007-00067 (GRACCIE)]), a collaboration agreement CSIC-JRC, and the Departaments of Medi Ambient from the Generalitat de Catalunya and Diputacio of Barcelona. The University of Birmingham (UK) and the University of Cork (Ireland) SAPUSS ATOFMS teams are also 5 acknowledged. ; Peer Reviewed

Sprachen

Englisch

Verlag

European Geophysical Society

DOI

10.5194/acp-13-4375-2013

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.