Open Access BASE2020

Cell-free biogenesis of bacterial division proto-rings that can constrict liposomes

Abstract

11 p.-4 fig. ; A major challenge towards the realization of an autonomous synthetic cell resides in the encoding of a division machinery in a genetic programme. In the bacterial cell cycle, the assembly of cytoskeletal proteins into a ring defines the division site. At the onset of the formation of the Escherichia coli divisome, a proto-ring consisting of FtsZ and its membrane-recruiting proteins takes place. Here, we show that FtsA-FtsZ ring-like structures driven by cell-free gene expression can be reconstituted on planar membranes and inside liposome compartments. Such cytoskeletal structures are found to constrict the liposome, generating elongated membrane necks and budding vesicles. Additional expression of the FtsZ cross-linker protein ZapA yields more rigid FtsZ bundles that attach to the membrane but fail to produce budding spots or necks in liposomes. These results demonstrate that gene-directed protein synthesis and assembly of membrane-constricting FtsZ-rings can be combined in a liposome-based artificial cell. ; This work was financially supported by the Netherlands Organization for Scientific Research (NWO/OCW) through the 'BaSyC—Building a Synthetic Cell' Gravitation grant (024.003.019) and the FOM program no. 151, and by the Spanish government grant BFU2016-75471-C2-1-P. ; Peer reviewed

Languages

English

Publisher

Nature Research

DOI

10.1038/s42003-020-01258-9

Report Issue

If you have problems with the access to a found title, you can use this form to contact us. You can also use this form to write to us if you have noticed any errors in the title display.