Effect of wheelchair design on wheeled mobility and propulsion efficiency in less-resourced settings
In: African Journal of Disability, Band 6
Abstract
Background: Wheelchair research includes both qualitative and quantitative approaches, primarily focuses on functionality and skill performance and is often limited to short testing periods. This is the first study to use the combination of a performance test (i.e. wheelchair propulsion test) and a multiple-day mobility assessment to evaluate wheelchair designs in rural areas of a developing country.Objectives: Test the feasibility of using wheel-mounted accelerometers to document bouts of wheeled mobility data in rural settings and use these data to compare how patients respond to different wheelchair designs.Methods: A quasi-experimental, pre- and post-test design was used to test the differences between locally manufactured wheelchairs (push rim and tricycle) and an imported intervention product (dual-lever propulsion wheelchair). A one-way repeated measures analysis of variance was used to interpret propulsion and wheeled mobility data.Results: There were no statistical differences in bouts of mobility between the locally manufactured and intervention product, which was explained by high amounts of variability within the data. With regard to the propulsion test, push rim users were significantly more efficient when using the intervention product compared with tricycle users.Conclusion: Use of wheel-mounted accelerometers as a means to test user mobility proved to be a feasible methodology in rural settings. Variability in wheeled mobility data could be decreased with longer acclimatisation periods. The data suggest that push rim users experience an easier transition to a dual-lever propulsion system.
Problem melden